[1] WHITESIDES G M, GRZYBOWSKI B. Self-assembly at all scales[J]. Science, 2002, 295(5564):2418-2421
[2] CHANDRASEKHAR S, PRASAD S K. Recent develop-ments in discotic liquid crystals[J]. Contemporary Physics, 1999, 40(4):237-2345
[3] CHANDRASEKHAR S, SADASHIVA B, SURESH K. Liquid crystals of disc-like molecules[J]. Pramana, 1977, 9(5):471-480
[4] (a) TSCHIERSKE C. Non-conventional liquid crystals-the importance of micro-segregation for self-organisation[J]. Journal of Materials Chemistry, 1998, 8(7):1485-1508. (b) O'NEILL M, KELLY S M. Liquid crystals for charge transport, luminescence and photonics[J]. Advanced Mate-rials, 2003, 15(14):1135-1146
[5] ADAM D, SCHUHMACHER P, SIMMERER J, et al. Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal[J]. Nature, 1994, 371(6493):141-143
[6] BUSHEY M L, NGUYEN T Q, ZHANG W, et al. Using hydrogen bonds to direct the assembly of crowded aromat-ics[J]. Angewandte Chemie International Edition, 2004, 43(41):5446-5453
[7] (a) SHEARMAN G C, YAHIOGLU G, KIRSTEIN J, et al. Synthesis and phase behaviour of beta-octaalkyl porphyrins[J]. Journal of Materials Chemistry, 2009, 19(5):598-604. (b) SEGADE A, LOPEZ-CALAHORRA F, VELASCO D. Multiple interactions in the self-association of porphyrin discotic mesogens[J]. Journal of Physical Chemistry B, 2008, 112(25):7395-7402
[8] (a) VAN NOSTRUM C F, PICKEN S J, SCHOUTEN A J, et al. Synthesis and supramolecular chemistry of novel liq-uid-crystalline crown ether-substituted phthalocyanines- toward molecular wires and molecular ionoelectronics[J]. Journal of the American Chemical Society, 1995, 117(40):9957-9965. (b) SMOLENYAK P, PETERSON R, NE-BESNY K, et al. Highly ordered thin films of octa substi-tuted phthalocyanines[J]. Journal of the American Chemical Society, 1999, 121(37):8628-8636
[9] KUMAR S. Recent developments in the chemistry of tri-phenylene-based discotic liquid crystals[J]. Liquid Crystals, 2004, 31(8):1037-1059
[10] (a) MULLER G R J, MEINERS C, ENKELMANN V, et al. Liquid crystalline perylene-3,4-dicarboximide derivatives with high thermal and photochemical stability[J]. Journal of Materials Chemistry, 1998, 8(1):61-64. (b) BALA-KRISHNAN K, DATAR A, NADDO T, et al. Effect of side-chain substituents on self-assembly of perylene diimide molecules:Morphology control[J]. Journal of the American Chemical Society, 2006, 128(22):7390-7398
[11] GÖRL D, SOBERATS B, HERBST S, et al. Perylene bisimide hydrogels and lyotropic liquid crystals with tem-perature-responsive color change[J]. Chemical Science, 2016, 7(11):6786-6790
[12] WU J, PISULA W, MULLEN K. Graphenes as potential material for electronics[J]. Chemical Reviews, 2007, 107(3):718-747
[13] HERBST S, SOBERATS B, LEOWANAWAT P, et al. A columnar liquid-crystal phase formed by hydrogen-bonded perylene bisimide j-aggregates[J]. Angewandte Chemie International Edition, 2017, 56(8):2162-2165
[14] KUMAR S. Discotic liquid crystals for solar cells[J]. Current Science, 2002, 82(3):256-257
[15] LENG S, WEX B, CHAN L, et al. Phase transitions and structures of novel pyrenes potentially useful in photo-voltaic applications[J]. Journal of Physical Chemistry B, 2009, 113(16):5403-5411
[16] SCHMIDT-MENDE L, FECHTENKOTTER A, MUL-LEN K, et al. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics[J]. Science, 2001, 293(5532):1119-1122
[17] LI J, CHANG J, TAN H, et al. Disc-like 7,14-dicyano-ovalene-3,4:10,11-bis(dicarboximide) as a solution-processible n-type semiconductor for air stable field-effect transistors[J]. Chemical Science, 2012, 3(3):846-850
[18] CHEN Z, LIU Y, WAGNER W, et al. Near-IR absorbing J-aggregate of an amphiphilic BF2-Azadipyrromethene dye by kinetic cooperative self-assembly[J]. Angewandte Chemie International Edition, 2017, 56(21):5729-5733
[19] LIU P, GAO F, ZHOU L, et al. Tetrathienyl-functionalized red- and NIR-absorbing BODIPY dyes appending various peripheral substituents[J]. Organic & Biomolecular Chemistry, 2017, 15(6):1393-1399
[20] YANG L, FAN G, REN X, et al. Aqueous self-assembly of a charged BODIPY amphiphile via nucleation-growth mechanism[J]. Physical Chemistry Chemical Physics, 2015, 17(14):9167-9172
[21] ZHANG Y, LIU P, PAN H, et al. Alignment of supramo-lecular J-aggregates based on uracil-functionalized BOD-IPY dye for polarized photoluminescence[J]. Chemical Communications, 2020, 56(80):12069-12072
[22] FAN G, LIN Y, YANG L, et al. Co-self-assembled nanoaggregates of BODIPY amphiphiles for dual colour imaging of live cells[J]. Chemical Communications, 2015, 51(62):12447-12450
[23] ZHU L, XIE W, ZHAO L, et al. Tetraphenylethylene- and fluorene-functionalized near-infrared aza-BODIPY dyes for living cell imaging[J]. Royal Society of Chemistry advances, 2017, 7(88):55839-55845
[24] TAKAHASHI R, NUNOKAWA T, SHIBUYA T, et al. Synthesis and solid-state polymerization of butadiyne derivatives with trialkoxyphenylurethane groups[J]. Bulletin of the Chemical Society of Japan, 2012, 85(2):236-244
[25] ALAMIRY M A, BENNISTON A C, COPLEY G, et al. Intramolecular excimer formation for covalently linked boron dipyrromethene dyes[J]. Journal of Physical Chemistry A, 2011, 115(44):12111-12119
[26] ADAM D, SCHUHMACHER P, SIMMERER J, et al. Fast photo-conduction in the highly ordered columnar phase of a discotic liquid crystal[J]. Nature, 1994, 371(6493):141-143
[27] DEHM V, CHEN Z, BAUMEISTER U, et al. Helical growth of semiconducting columnar dye assemblies based on chiral perylene bisimides[J]. Organic Letters, 2007, 9(6):1085-1088
|