[1] 杨军. 重芳烃资源的综合利用[J]. 云南化工, 1995, 22(4): 20-24 YANG Jun. Comprehensive utilization of heavy aromatic hydrocarbons[J]. Yunnan Chemical Technology, 1995, 22(4): 20-24(in Chinese) [2] 徐威. C10+重芳烃深加工综合利用研究[D]. 辽宁抚顺: 辽宁石油化工大学, 2019 XU Wei. Study on comprehensive utilization of C10+ Heavy aromatics[D]. Liaoning Fushun: Liaoning Shihua University, 2019 (in Chinese) [3] USLAMIN E A, SAITO H, KOSINOV N, et al. Aromatization of ethylene over zeolite-based catalysts[J]. Catalysis Science & Technology, 2020, 10(9): 2774-2785 [4] YUSUF A Z, JOHN Y M, ADEREMI B O, et al. Modelling, simulation and sensitivity analysis of naphtha catalytic reforming reactions[J]. Computers & Chemical Engineering, 2019, 130(2): 106531.1-106531.16 [5] 赵开鹏, 韩松. 重整C9芳烃的综合利用[J]. 石油化工, 1999, 28(7): 483-493 ZHAO Kaipeng, HAN Song. Comprehensive utilization of reformed C9 aromatics[J]. Petrochemical Technology, 1999, 28(7): 483-493(in Chinese) [6] ZHOU X, ZHAO M, SHENG N, et al. Enhancing light olefins and aromatics production from naphthenic-based vacuum gas oil: Process integration, techno-economic analysis and life cycle environmental assessment[J]. Computers & Chemical Engineering, 2021, doi:10.1016/j.compchemeng.2020.107207 [7] 关颖. 国内外C10综合利用技术及其发展趋势[J]. 化学工业, 2017, 35(5): 32-37, 64 GUAN Ying. Domestic and foreign C10 comprehensive utilization technology and development trend[J]. Chemical Industry, 2017, 35(5): 32-37, 64(in Chinese) [8] 王钦卓, 杨永忠. 我国煤化工标准现状及展望[J]. 洁净煤技术, 2019, 25(6): 61-70 WANG Qinzhuo, YANG Yongzhong. Status and prospect of coal chemical industry standardization in China[J]. Clean Coal Technology, 2019, 25(6): 61-70(in Chinese) [9] CHENG K, ZHOU W, KANG J, et al. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem, 2017, 3(2): 334-347 [10] XU Y, LIU J, WANG J, et al. Selective conversion of syngas to aromatics over Fe3O4@MnO2 and hollow HZSM-5 bifunctional catalysts[J]. ACS Catalysis, 2019, 9(6): 5147-5156 [11] 叶茂, 朱文良, 徐庶亮, 等. 关于煤化工与石油化工的协调发展[J]. 中国科学院院刊, 2019, 34(4): 417-425 YE Mao, ZHU Wenliang, XU Shuliang, et al. Coordinated development of coal chemical and petrochemical industries in China[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 417-425(in Chinese) [12] 黄晓凡, 汤效平, 崔宇, 等. 由煤炭制取芳烃技术进展[J]. 当代化工, 2020, 49(11): 2615-2620 HUANG Xiaofan, TANG Xiaoping, CUI Yu, et al. Advances in coal to aromatics technology[J]. Contemporary Chemical Industry, 2020, 49(11): 2615-2620(in Chinese) [13] 刘毅, 王金玲. 重芳烃轻质化技术和前景浅析[J]. 当代化工研究, 2017(6): 40-41 LIU Yi, WANG Jinling. Analysis on the technology and Prospect of heavy aromatics[J]. Modern Chemical Research, 2017(6): 40-41(in Chinese) [14] KIM T, KIM G P, JANG J, et al. An investigation on the selective hydrodealkylation of C9+aromatics over alkali-treated Pt/H-ZSM-5 zeolites[J]. Catalysis Science & Technology, 2016, 6(14): 5599-5607 [15] 孔德金, 祁晓岚, 朱志荣, 等. 重芳烃轻质化技术进展[J]. 化工进展, 2006, 25(9): 983-987 KONG Dejin, QI Xiaolan, ZHU Zhirong, et al. Technological advances in conversion of heavy aromatics to light aromatics[J]. Chemical Industry and Engineering Progress, 2006, 25(9): 983-987(in Chinese) [16] TSAI T C, CHEN W, LIU S, et al. Metal zeolites for transalkylation of toluene and heavy aromatics[J]. Catalysis Today, 2002, 73(1/2): 39-47 [17] MEIDANSHAHI V, BAHMANPOUR A M, IRANSHAHI D, et al. Theoretical investigation of aromatics production enhancement in thermal coupling of naphtha reforming and hydrodealkylation of toluene[J]. Chemical Engineering and Processing: Process Intensification, 2011, 50(9): 893-903 [18] LIM D, JANG J, KIM T, et al. Selective hydrodealkylation of C9+ aromatics to benzene, toluene, and xylenes (BTX) over a Pt/H-ZSM-5 catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2015, 407: 147-151 [19] 臧甲忠, 郭春垒, 范景新, 等. C9+重芳烃增产BTX技术进展[J]. 化工进展, 2017, 36(4): 1278-1287 ZANG Jiazhong, GUO Chunlei, FAN Jingxin, et al. Advance in BTX production increase technology from C9+ heavy aromatics[J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1278-1287(in Chinese) [20] 石云革, 柏晓红. 800 kt/a乙烯改扩建中甲苯脱烷基制苯的探讨[J]. 炼油与化工, 2004, 15(4): 8-9, 14 SHI Yungge, BAI Xiaohong. Discussions on the process for manufacturing benzene by dealkylation of toluene in the 800 kt/a ethylene revamp project[J]. Refining and Chemicals, 2004, 15(4): 8-9, 14(in Chinese) [21] 季静, 柴忠义. 重质芳烃轻质化技术研究进展[J]. 化学工业, 2013, 31(4): 25-27 JI Jing, CHAI Zhongyi. The research progress of heavy aromatic to lightweight technology[J]. Chemical Industry, 2013, 31(4): 25-27(in Chinese) [22] WANG I, TSAI T C, HUANG S. Disproportionation of toluene and of trimethylbenzene and their transalkylation over zeolite beta[J]. Industrial & Engineering Chemistry Research, 1990, 29(10): 2005-2012 [23] 温强. 歧化及烷基转移反应中甲苯与C9芳烃含量变化对苯收率和C8芳烃收率的影响[J]. 化工管理, 2020(9): 193-194 WEN Qiang. Effect of changes in toluene and C9 aromatics content on the yield of benzene and C8 aromatics in disproportionation and alkylation transfer reactions[J]. Chemical Enterprise Management, 2020(9): 193-194(in Chinese) [24] 路守彦. 对二甲苯工艺技术与生产[J]. 石化技术, 2012, 19(2): 62-65, 70 LU Shouyan. Paraxylene process technology and production[J]. Petrochemical Industry Technology, 2012, 19(2): 62-65, 70(in Chinese) [25] 冯志武. PX生产工艺及研究进展[J]. 现代化工, 2019, 39(9): 58-62 FENG Zhiwu. Production technology of Para-xylene and research progress[J]. Modern Chemical Industry, 2019, 39(9): 58-62(in Chinese) [26] 米多, 王玉辉, 王广胜. 甲苯歧化与烷基转移技术进展[J]. 化工技术经济, 2006, 24(2): 13-16, 20 MI Duo, WANG Yuhui, WANG Guangsheng. The technological advances of toluene disproportionation and transalkylation process[J]. Chemical Techno-Economics, 2006, 24(2): 13-16, 20(in Chinese) [27] KIM Y S, CHO K S, LEE Y K. Morphology effect of β-zeolite supports for Ni2P catalysts on the hydrocracking of polycyclic aromatic hydrocarbons to benzene, toluene, and xylene[J]. Journal of Catalysis, 2017, 351: 67-78 [28] 李经球, 童伟益, 郑均林, 等. 重芳烃轻质化增产二甲苯的复合床工艺: CN107759430A[P]. 2018-03-06 [29] 刘天浩. 简述重芳烃的现代生产工艺和综合利用[J]. 甘肃石油和化工, 2012, 26(3): 28-32 LIU Tianhao. Modern production technology and comprehensive utilization of heavy aromatic[J]. Gansu Petroleum & Chemical Industry, 2012(3):28-32(in Chinese) [30] GAILE A A, ZALISHCHEVSKII G D, GAFUR N N, et al. Separation of aromatic hydrocarbons from reformate. combined extraction fractionation-extraction[J]. Chemistry and Technology of Fuels and Oils, 2004, 40(3): 131-136 [31] KISS A A. Distillation technology: still young and full of breakthrough opportunities[J]. Journal of Chemical Technology & Biotechnology, 2014, 89(4): 479-498 [32] 李珞, 李倩倩. 精馏技术的发展及应用[J]. 现代经济信息, 2010(4): 204-204 LI Luo, LI Qianqian. Development and application of distillation technology [J]. Modern Economic Information, 2010(4): 204-204(in Chinese) [33] ZHU M, SUN J, TIAN Y, et al. Design and application of a highly efficient separation technology for C9 arenes[J]. Asia-Pacific Journal of Chemical Engineering, 2007, 2(4): 278-281 [34] 梁诚. 偏三甲苯技术进展与市场分析[J]. 精细化工原料及中间体, 2011(6): 35-38 LIANG Cheng. Technological progress and market analysis of meta-trimethylbenzene [J]. Fine Chemical Industrial Raw Materials & Intermediates, 2011(6): 35-38(in Chinese) [35] LOTKHOV V A, KVASHNIN S Y, KULOV N N. Effect of separating agent in extractive distillation[J]. Theoretical Foundations of Chemical Engineering, 2020, 54(1): 172-177 [36] 林军, 顾正桂. 萃取精馏制取均三甲苯的实验研究[J]. 化工时刊, 2000, 14(5): 18-20 LIN Jun, GU Zhenggui. Experiment and calculation of producing sym-trimethy benzene by extractive distillation[J]. Chemical Industry Times, 2000, 14(5): 18-20(in Chinese) [37] 冯海强, 傅吉全. 采用分离集成技术从碳九芳烃中提取均三甲苯[J]. 化工进展, 2011, 30(3): 478-482 FENG Haiqiang, FU Jiquan. Extraction of mesitylene from C9 arene by integrated separation technology[J]. Chemical Industry and Engineering Progress, 2011, 30(3): 478-482(in Chinese) [38] 曹雨, 黄国强, 李鑫钢, 等. 从溶剂油中提纯连三甲苯的萃取精馏溶剂选择[J]. 化工进展, 2009, 28(9): 1526-1529, 1535 CAO Yu, HUANG Guoqiang, LI Xingang, et al. Selection of extractive distillation solvent for the purification of 1, 2, 3-trimethylbenzene from solvent oil[J]. Chemical Industry and Engineering Progress, 2009, 28(9): 1526-1529, 1535(in Chinese) [39] 张瑞琪, 姜斌, 任海伦, 等. 环丁砜萃取精馏提纯连三甲苯的实验和模拟[J]. 化工进展, 2016, 35(11): 3465-3469 ZHANG Ruiqi, JIANG Bin, REN Hailun, et al. Experiment and simulation on the purification of 1, 2, 3-trimethylbenzene by extractive distillation with sulfolane[J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3465-3469(in Chinese) [40] 冯海强, 傅吉全. 萃取精馏分离均三甲苯的实验和模拟[J]. 石油化工, 2011, 40(2): 157-160 FENG Haiqiang, FU Jiquan. Experiment and simulation of separating mesitylene by extractive distillation[J]. Petrochemical Technology, 2011, 40(2): 157-160(in Chinese) [41] 郭兰芬. 高纯度均三甲苯分离工艺中烷化剂的选择和应用研究[J]. 云南化工, 2011, 38(2): 6-11 GUO Lanfen. Selection and application of alkylating agents in process of separation of high purity of mesitylene[J]. Yunnan Chemical Technology, 2011, 38(2): 6-11(in Chinese) [42] 程静. 均三甲苯生产技术进展[J]. 化工科技市场, 2009, 32(3): 31-33 CHENG Jing. Progress in production technology of 1, 3, 5-trimethylbenzene[J]. Chemical Technology Market, 2009, 32(3): 31-33(in Chinese) [43] 赵东. 利用MTBE尾气从C9芳烃中制备高纯均三甲苯[D]. 天津: 天津大学, 2005 ZHAO Dong. Preparation of high pure mesitylene using MTBE tail gas from C9 aromatic hydrocarbon[D]. Tianjin: Tianjin University, 2005 (in Chinese) [44] 刘健,李冬燕,王晓梅. 一种分离提纯连三甲苯的方法:CN201811520713.5[P]. 2020-06-19 [45] 王朝阳. 多效精馏节能技术[J]. 中小企业管理与科技, 2018(9): 155-156 WANG Chaoyang. The energy saving technology of multi-effect distillation[J]. Management & Technology of SME, 2018(9): 155-156(in Chinese) [46] JANA A K. Advances in heat pump assisted distillation column: A review[J]. Energy Conversion and Management, 2014, 77: 287-297 [47] 徐振凯, 马海洪. 偏三甲苯多效热集成分离工艺的模拟研究[J]. 石油炼制与化工, 2011, 42(6): 73-76 XU Zhenkai, MA Haihong. Simulation study of 1, 2, 4-trimethylbenzen separation process with multi-effect heat integration distillation[J]. Petroleum Processing and Petrochemicals, 2011, 42(6): 73-76(in Chinese) [48] 王哲. 重整碳九分离系统的节能流程研究[J]. 资源节约与环保, 2016(6): 17-17 WANG Zhe. Research on energy saving process of reforming C9 separation system[J]. Resources Economization & Environmental Protection, 2016(6): 17-17(in Chinese) [49] 辛江, 黄国强, 李鑫钢, 等. 三甲苯精馏分离的节能研究[J]. 现代化工, 2007, 27(3): 52-54, 56 XIN Jiang, HUANG Guoqiang, LI Xingang, et al. Study on energy saving in trimethylbenzene distillation[J]. Modern Chemical Industry, 2007, 27(3): 52-54, 56(in Chinese) [50] 李婷, 侯经纬, 李潇, 等. 熔融结晶在重芳烃分离中的应用[J]. 过程工程学报, 2020, 20(6): 628-637 LI Ting, HOU Jingwei, LI Xiao, et al. Application of melt crystallization in the purification of heavy aromatics[J]. The Chinese Journal of Process Engineering, 2020, 20(6): 628-637(in Chinese) [51] CONG S, LIU Y, LI H, et al. Purification and separation of durene by static melt crystallization[J]. Chinese Journal of Chemical Engineering, 2015, 23(3): 505-509 [52] LI J, KUPPLER R J, ZHOU H, et al. Selective gas adsorption and separation in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1477-1504 [53] 陆林玮, 李善安, 卓超, 等. 从重芳烃中分离提纯连三甲苯和茚满的方法:CN101704706A[P]. 2010-05-12 [54] 孙绪江, 张军, 齐彦伟. 分子筛吸附分离2, 6-二甲基萘[J]. 精细石油化工, 1999, 16(5): 4-6 SUN Xujiang, ZHANG Jun, QI Yanwei. Adsorptive separation of 2, 6-dimethylnaphthalene by molecular sieves[J]. Speciality Petrochemicals, 1999, 16(5): 4-6(in Chinese) [55] 张卫江, 王文喜, 曲红梅, 等. 均三甲苯生产与分离技术新进展[J]. 化学工业与工程, 2002, 19(3): 265-270 ZHANG Weijiang, WANG Wenxi, QU Hongmei, et al. New advances in the production and separation technology of mesitylene[J]. Chemical Industry and Engineering, 2002, 19(3): 265-270(in Chinese) [56] 于旭霞. 1, 3, 5-三甲基苯制备方法的研究进展[J]. 安徽化工, 2015, 41(6): 6-9 YU Xuxia. Status and progress of 1, 3, 5-trimethylbenzene preparation methods[J]. Anhui Chemical Industry, 2015, 41(6): 6-9(in Chinese)
|