[1] Jemal A, Bray F, Center M M, et al. Global cancer statistics[J]. CA:A Cancer Journal for Clinicians, 2011, 61(2):69-90
[2] Bu L, Yan J, Wang Z, et al. Advances in drug delivery for post-surgical cancer treatment[J]. Biomaterials, 2019, doi:10.1016/j.biomaterials.2019.04.027
[3] Ni R, Zhu J, Xu Z, et al. A self-assembled pH/enzyme dual-responsive prodrug with PEG deshielding for multidrug-resistant tumor therapy[J]. Journal of Materials Chemistry B, 2020, 8(6):1290-1301
[4] Lu W, Qi X, Zhang Q, et al. A pegylated liposomal platform:Pharmacokinetics, pharmacodynamics, and toxicity in mice using doxorubicin as a model drug[J]. Journal of Pharmacological Sciences, 2004, 95(3):381-389
[5] Peer D, Karp J M, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy[J]. Nature Nanotechnology, 2007, 2(12):751-760
[6] Lan Y, Sun Y, Yang T, et al. Co-delivery of paclitaxel by a capsaicin prodrug micelle facilitating for combination therapy on breast cancer[J]. Molecular Pharmaceutics, 2019, 16(8):3430-3440
[7] Yu K, Yang X, He L, et al. Facile preparation of pH/reduction dual-stimuli responsive dextran nanogel as environment-sensitive carrier of doxorubicin[J]. Polymer, 2020, doi:10.1016/j.polymer.2020.122585
[8] 苏志桂, 莫然, 张灿, 等. 克服肿瘤生理病理屏障的纳米药物递送系统的研究进展[J]. 中国药科大学学报, 2015, 46(1):28-39 Su Zhigui, Mo Ran, Zhang Can, et al. Research progress of nano drug delivery system to overcome the physiological and pathological barrier of tumor[J]. Journal of China Pharmaceutical University, 2015, 46(1):28-39(in Chinese)
[9] Yared J, Tkaczuk K. Update on taxane development:New analogs and new formulations[J]. Drug Design, Development and Therapy, 2012, doi:10.2147/DDDT.S28997
[10] Zhao X, Chen M, Zhang W, et al. Polymerization-induced self-assembly to produce prodrug nanoparticles with reduction-responsive camptothecin release and pH-responsive charge-reversible property[J]. Macromolecular Rapid Communications, 2020, doi:10.1002/marc.202000260
[11] Hao D, Wang J, Xie R, et al. pH responsive docetaxel micelles with improved therapeutic efficacy on mice xenograft tumor[J]. Acta Pharmaceutica Sinica, 2020, 55(8):1914-1922
[12] Siegel R L, Miller K D, Jemal A. Cancer statistics, 2019[J]. CA:A Cancer Journal for Clinicians, 2019, 69(1):7-34
[13] Han M, Huang-Fu M, Guo W, et al. MMP-2-sensitive HA end-conjugated poly(amidoamine) dendrimers via click reaction to enhance drug penetration into solid tumor[J]. ACS Applied Materials & Interfaces, 2017, 9(49):42459-42470
[14] Lee B K, Yun Y, Park K. Smart nanoparticles for drug delivery:Boundaries and opportunities[J]. Chemical Engineering Science, 2015, 125:158-164
[15] Chen Z, Wen D, Gu Z. Cargo-encapsulated cells for drug delivery[J]. Science China Life Sciences, 2020, 63(4):599-601
[16] Zhang A, Jung K, Li A, et al. Recent advances in stimuli-responsive polymer systems for remotely controlled drug release[J]. Progress in Polymer Science, 2019, doi:10.1016/j.progpolymsci.2019.101164
[17] Wang T, Wang D, Liu J, et al. Acidity-triggered ligand-presenting nanoparticles to overcome sequential drug delivery barriers to tumors[J]. Nano Letters, 2017, 17(9):5429-5436
[18] Li J, Huo M, Wang J, et al. Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel[J]. Biomaterials, 2012, 33(7):2310-2320
[19] Chen Y, Su M, Li Y, et al. Enzymatic PEG-poly (amine-co-disulfide ester) nanoparticles as pH-and redox-responsive drug nanocarriers for efficient antitumor treatment[J]. ACS Applied Materials & Interfaces, 2017, 9(36):30519-30535
[20] Zhao S, Tan S, Guo Y, et al. pH-sensitive docetaxel-loaded d-α-tocopheryl polyethylene glycol succinate-poly(β-amino ester) copolymer nanoparticles for overcoming multidrug resistance[J]. Biomacromolecules, 2013, 14(8):2636-2646
[21] Rashidzadeh H, Rezaei S J T, Zamani S, et al. pH-Sensitive curcumin conjugated micelles for tumor triggered drug delivery[J]. Journal of Biomaterials Science, Polymer Edition, 2020, 9:1-17
[22] Yan T, Zhu S, Hui W, et al. Chitosan based pH-responsive polymeric prodrug vector for enhanced tumor targeted co-delivery of doxorubicin and siRNA[J]. Carbohydrate Polymers, 2020, doi:10.1016/j.carbpol.2020.116781
[23] Pan J, Lei S, Chang L, et al. Smart pH-responsive nanoparticles in a model tumor microenvironment for enhanced cellular uptake[J]. Journal of Materials Science, 2019, 54(2):1692-1702
[24] Song N, Liu W, Tu Q, et al. Preparation and in vitro properties of redox-responsive polymeric nanoparticles for paclitaxel delivery[J]. Colloids and Surfaces B:Biointerfaces, 2011, 87(2):454-463
[25] Liu K, Liu Y, Li C, et al. Self-assembled pH and redox dual responsive carboxy methylcellulose-based polymeric nanoparticles for efficient anticancer drug codelivery[J]. ACS Biomaterials Science & Engineering, 2018, 4:4200-4207
[26] Song Q, Wang X, Wang Y, et al. Reduction responsive self-assembled nanoparticles based on disulfide-linked drug-drug conjugate with high drug loading and antitumor efficacy[J]. Molecular Pharmaceutics, 2016, 13(1):190-201
[27] Xu W, Ding J, Chen X. Reduction-responsive polypeptide micelles for intracellular delivery of antineoplastic agent[J]. Biomacromolecules, 2017, 18(10):3291-3301
[28] He W, Du Y, Zhou W, et al. Core-crosslinked nanomicelles based on crosslinkable prodrug and surfactants for reduction responsive delivery of camptothecin and improved anticancer efficacy[J]. European Journal of Pharmaceutical Sciences, 2020, doi:10.1016/j.ejps.2020.105340
[29] Wan D, Li C, Pan J. Polymeric micelles with reduction-responsive function for targeted cancer chemotherapy[J]. ACS Applied Bio Materials, 2020, 3(2):1139-1146
[30] Zhang X, Gao X. Tumor microenvironment:A novel target for antitumor activity of polysaccharides[J]. Journal of China Pharmaceutical University, 2010, 41(1):1-10
[31] Ke W, Li J, Zhao K, et al. Modular design and facile synthesis of enzyme-responsive peptide-linked block copolymers for efficient delivery of doxorubicin[J]. Biomacromolecules, 2016, 17(10):3268-3276
[32] Ke W, Zha Z, Mukerabigwi J F, et al. Matrix metalloproteinase-responsive multifunctional peptide-linked amphiphilic block copolymers for intelligent systemic anticancer drug delivery[J]. Bioconjugate Chemistry, 2017, 28(8):2190-2198
[33] Li J, Xiao S, Xu Y, et al. Smart asymmetric vesicles with triggered availability of inner cell-penetrating shells for specific intracellular drug delivery[J]. ACS Applied Materials & Interfaces, 2017, 9(21):17727-17735
[34] Pan J, Li P, Wang Y, et al. Active targeted drug delivery of MMP-2 sensitive polymeric nanoparticles[J]. Chemical Communications, 2018, 54(79):11092-11095
[35] Ma N, Li Y, Xu H, et al. Dual redox responsive assemblies formed from diselenide block copolymers[J]. Journal of the American Chemical Society, 2010, 132(2):442-443
[36] 禄秀娟,郭鑫昊,万冬,等.基于酸敏感的双响应抗癌药物载体的研究进展[J].生物工程学报, 2020, 36(9):1-9 Lu Xiujuan, Guo Xinhao, Wan Dong, et al. Progress in dual-responsive nanocarriers based on acid sensitivity for anticancer drug[J]. Chinese Journal of Biotechnology, 2020, 36(9):1-9(in Chinese)
[37] Xie P, Liu P. pH-responsive surface charge reversal carboxymethyl chitosan-based drug delivery system for pH and reduction dual-responsive triggered DOX release[J]. Carbohydrate Polymers, 2020, doi:10.1016/j.carbpol.2020.116093
[38] Li M, Tang Z, Lv S, et al. Cisplatin crosslinked pH-sensitive nanoparticles for efficient delivery of doxorubicin[J]. Biomaterials, 2014, 35(12):3851-3864
|