[1] ZHANG L, SHI D, LIU T, et al. Nickel-based materials for supercapacitors[J]. Materials Today, 2019, 25: 35-65 [2] WANG G, ZHANG L, ZHANG J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2): 797-828 [3] CHE H, LIU A, MU J, et al. Facile synthesis of flower-like NixCo<sub>3-xO4(0≤x≤1.5) microstructures as high-performance electrode materials for supercapacitors[J]. Electrochimica Acta, 2017, 225: 283-291 [4] CHEN H, JIANG J, ZHAO Y, et al. One-pot synthesis of porous nickel cobalt sulphides: Tuning the composition for superior pseudocapacitance[J]. Journal of Materials Chemistry A, 2015, 3(1): 428-437 [5] YUN X, LI J, LUO Z, et al. Advanced aqueous energy storage devices based on flower-like nanosheets-assembled Ni0.85Se microspheres and porous Fe2O3 nanospheres[J]. Electrochimica Acta, 2019, 302: 449-458 [6] SUI Y, YE A, QI J, et al. Construction of NiCo2O4@Ni0.85Se core-shell nanorod arrays on Ni foam as advanced materials for an asymmetric supercapacitor[J]. Journal of Alloys and Compounds, 2019, 778: 234-238 [7] ZHANG J, JIANG B, ZHANG J, et al. Facile synthesis of NiSe2 particles with highly efficient electrocatalytic oxygen evolution reaction[J]. Materials Letters, 2019, 235: 53-56 [8] BHAT K S, NAGARAJA H S. Nickel selenide nanostructures as an electrocatalyst for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2018, 43(43): 19851-19863 [9] CHEN H, CHEN S, ZHU Y, et al. Synergistic effect of Ni and Co ions on molybdates for superior electrochemical performance[J]. Electrochimica Acta, 2016, 190: 57-63 [10] QUAN L, LIU T, YI M, et al. Construction of hierarchical nickel cobalt selenide complex hollow spheres for pseudocapacitors with enhanced performance[J]. Electrochimica Acta, 2018, 281: 109-116 [11] XIA C, JIANG Q, ZHAO C, et al. Asymmetric supercapacitors with metal-like ternary selenides and porous graphene electrodes[J]. Nano Energy, 2016, 24: 78-86 [12] DU L, DU W, ZHAO Y, et al. Ternary nickel-cobalt selenide nanosheet arrays with enhanced electrochemical performance for hybrid supercapacitors[J]. Journal of Alloys and Compounds, 2019, 778: 848-857 [13] LI G, XU C. Hydrothermal synthesis of 3D NixCo1-xS2 particles/graphene composite hydrogels for high performance supercapacitors[J]. Carbon, 2015, 90: 44-52 [14] ZHOU S, LIU S, CHEN W, et al. A "Biconcave-Alleviated" strategy to construct Aspergillus niger-derived carbon/MoS2 for ultrastable sodium ion storage[J]. ACS Nano, 2021,15(8):13814-13825 [15] YANG J, YUAN Y, WANG W, et al. Interconnected Co0.85 Se nanosheets as cathode materials for asymmetric supercapacitors[J]. Journal of Power Sources, 2017, 340: 6-13 [16] WU L, SHEN L, WANG T, et al. Component-controllable bimetallic nickel cobalt selenides (NixCo1-x)0.85Se for high performance supercapacitors[J]. Journal of Alloys and Compounds, 2018, 766: 527-535 [17] CHEN H, FAN M, LI C, et al. One-pot synthesis of hollow NiSe-CoSe nanoparticles with improved performance for hybrid supercapacitors[J]. Journal of Power Sources, 2016, 329: 314-322 [18] SUN Z, LIU F, WANG J, et al. Tiny Ni0.85Se nanosheets modified by amorphous carbon and rGO with enhanced electrochemical performance toward hybrid supercapacitors[J]. Journal of Energy Storage, 2020, 29: 101348 [19] SUN S, ZHAI T, LIANG C, et al. Boosted crystalline/amorphous Fe2O3-δ core/shell heterostructure for flexible solid-state pseudocapacitors in large scale[J]. Nano Energy, 2018, 45: 390-397 [20] ZHU Y, WU Z, JING M, et al. Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors[J]. Journal of Power Sources, 2015, 273: 584-590 [21] WANG S, MA S. Facile fabrication of Ni0.85Se nanowires by the composite alkali salt method as a novel cathode material for asymmetric supercapacitors[J]. Dalton Transactions, 2019, 48(12): 3906-3913 [22] PENG H, WEI C, WANG K, et al. Ni0.85Se@MoSe2 nanosheet arrays as the electrode for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2017, 9(20): 17067-17075 [23] DAS A K, PARIA S, MAITRA A, et al. Highly rate capable nanoflower-like NiSe and WO3@PPy composite electrode materials toward high energy density flexible all-solid-state asymmetric supercapacitor[J]. ACS Applied Electronic Materials, 2019, 1(6): 977-990 [24] YANG P, WU Z, JIANG Y, et al. Fractal (NixCo1-x)9Se8 nanodendrite arrays with highly exposed surface for wearable, all-solid-state supercapacitor[J]. Advanced Energy Materials, 2018, 8(26): 1801392 [25] XIE S, GOU J, LIU B, et al. Nickel-cobalt selenide as high-performance and long-life electrode material for supercapacitor[J]. Journal of Colloid and Interface Science, 2019, 540: 306-314 [26] TAN Y, WU D, WANG T, et al. Facile synthesis of functionalized graphene hydrogel for high performance supercapacitor with high volumetric capacitance and ultralong cycling stability[J]. Applied Surface Science, 2018, 455: 683-695
|