[1] JOHNSTON P, CARTHEY N, HUTCHINGS G J. Discovery, development, and commercialization of gold catalysts for acetylene hydrochlorination[J]. Journal of the American Chemical Society, 2015, 137(46): 14548-14557 [2] ZHONG J, XU Y, LIU Z. Heterogeneous non-mercury catalysts for acetylene hydrochlorination: Progress, challenges, and opportunities[J]. Green Chemistry, 2018, 20(11): 2412-2427 [3] XU H, LUO G. Green production of PVC from laboratory to industrialization: State-of-the-art review of heterogeneous non-mercury catalysts for acetylene hydrochlorination[J]. Journal of Industrial and Engineering Chemistry, 2018, 65: 13-25 [4] HUTCHINGS G. Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts[J]. Journal of Catalysis, 1985, 96(1): 292-295 [5] MALTA G, KONDRAT S A, FREAKLEY S J, et al. Deactivation of a single-site gold-on-carbon acetylene hydrochlorination catalyst: An X-ray absorption and inelastic neutron scattering study[J]. ACS Catalysis, 2018, 8(9): 8493-8505 [6] MALTA G, KONDRAT S A, FREAKLEY S J, et al. Identification of single-site gold catalysis in acetylene hydrochlorination[J]. Science, 2017, 355(6332): 1399-1403 [7] CHEN Z, CHEN Y, CHAO S, et al. Single-atom AuI-N3 site for acetylene hydrochlorination reaction[J]. ACS Catalysis, 2020, 10(3): 1865-1870 [8] LI Y, WANG F, HU J, et al. A study on the rules of ligands in highly efficient Ru-amide/AC catalysts for acetylene hydrochlorination[J]. Catalysis Science & Technology, 2021, 11(22): 7347-7358 [9] SHANG S, ZHAO W, WANG Y, et al. Highly efficient Ru@IL/AC to substitute mercuric catalyst for acetylene hydrochlorination[J]. ACS Catalysis, 2017, 7(5): 3510-3520 [10] ZHAO J, YUE Y, SHENG G, et al. Supported ionic liquid-palladium catalyst for the highly effective hydrochlorination of acetylene[J]. Chemical Engineering Journal, 2019, 360: 38-46 [11] WANG B, YUE Y, JIN C, et al. Hydrochlorination of acetylene on single-atom Pd/N-doped carbon catalysts: Importance of pyridinic-N synergism [J]. Applied Catalysis B-Environmental, 2020, 272 [12] WANG B, ZHANG T, LIU Y, et al. Phosphine-oxide organic ligand improved Cu-based catalyst for acetylene hydrochlorination[J]. Applied Catalysis A: General, 2022, 630: 118461 [13] REN Y, WU B, WANG F, et al. Chlorocuprate(i) ionic liquid as an efficient and stable Cu-based catalyst for hydrochlorination of acetylene[J]. Catalysis Science & Technology, 2019, 9(11): 2868-2878 [14] 姚世康, 张旭斌, 王富民, 等. 稳定的钌基离子液体催化液相乙炔氢氯化[J]. 化学工业与工程, 2022, 39(4): 9-21 YAO Shikang, ZHANG Xubin, WANG Fumin, et al. A stable Ru-based ionic liquid as a catalyst for hydrochlorination of acetylene in liquid phase[J]. Chemical Industry and Engineering, 2022, 39(4): 9-21(in Chinese) [15] QIN G, SONG Y, JIN R, et al. Gas-liquid acetylene hydrochlorination under nonmercuric catalysis using ionic liquids as reaction media[J]. Green Chemistry, 2011, 13(6): 1495 [16] SONG Q, WANG S, SHEN B, et al. Palladium-based catalysts for the hydrochlorination of acetylene: Reasons for deactivation and its regeneration[J]. Petroleum Science and Technology, 2010, 28(18): 1825-1833 [17] WANG L, WANG F, WANG J. Effect of K promoter on the stability of Pd/NFY catalysts for acetylene hydrochlorination[J]. Catalysis Communications, 2016, 83: 9-13 [18] LI P, DING M, HE L, et al. The activity and stability of PdCl2/C-N catalyst for acetylene hydrochlorination[J]. Science China Chemistry, 2018, 61(4): 444-448 [19] LI Y, ZHANG C, ZHANG H, et al. Effects of N-, P-, or O-containing ligands on gold-based complex catalysts for acetylene hydrochlorination [J]. Applied Catalysis a-General, 2021, 612 [20] LI H, WU B, WANG F, et al. Achieving efficient and low content Ru-based catalyst for acetylene hydrochlorination based on N,N'-dimethylpropyleneurea [J]. Chemcatchem, 2018, 10(18): 4090-4099 [21] LI Y, WANG F, WU B, et al. Competing on the same stage: Ru-based catalysts modified by basic ligands and organic chlorine salts for acetylene hydrochlorination[J]. Catalysis Science & Technology, 2022, 12(16): 5086-5096 [22] DONG X, LIU G, CHEN Z, et al. Activated carbon supported nitrogen-containing diheterocycle mercury-free catalyst for acetylene hydrochlorination[J]. Molecular Catalysis, 2022, 525: 112366 [23] FRISCH G W T, SCHLEGEL H B, SCUSERIA G E, et al. GAUSSIAN 09 (Revision D.01)[M]. Wallingford Ct: Gaussian, Inc., 2016 [24] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104 [25] MIEHLICH B, SAVIN A, STOLL H, et al. Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr[J]. Chemical Physics Letters, 1989, 157(3): 200-206 [26] EICHKORN K, WEIGEND F, TREUTLER O, et al. Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials[J]. Theoretical Chemistry Accounts, 1997, 97(1): 119-124 [27] LU T, CHEN F. Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592 [28] ABBOTT A P, CAPPER G, DAVIES D L, et al. Ionic liquids based upon metal halide/substituted quaternary ammonium salt mixtures[J]. Inorganic Chemistry, 2004, 43(11): 3447-3452 [29] LIU Y, ZHANG H, DONG Y, et al. Characteristics of activated carbons modulate the catalytic performance for acetylene hydrochlorination [J]. Molecular Catalysis, 2020, 483 [30] LONG Z, WANG L, YAN H, et al. Design of choline chloride modified USY zeolites for palladium-catalyzed acetylene hydrochlorination[J]. RSC Advances, 2022, 12(16): 9923-9932 [31] HE H, ZHAO J, WANG B, et al. Design strategies for the development of a Pd-based acetylene hydrochlorination catalyst: Improvement of catalyst stability by nitrogen-containing ligands[J]. RSC Advances, 2019, 9(37): 21557-21563 [32] WANG L, WANG F, WANG J. Enhanced stability of hydrochlorination of acetylene using polyaniline-modified Pd/HY catalysts[J]. Catalysis Communications, 2016, 74: 55-59 [33] HU J, WANG F, LI Y, et al. Enhanced catalytic performance of oxidized Ru supported on N-doped mesoporous carbon for acetylene hydrochlorination [J]. Applied Catalysis a-General, 2021, 623 [34] ZHANG M, WANG L, YAN H, et al. Palladium-halloysite nanocomposites as an efficient heterogeneous catalyst for acetylene hydrochlorination[J]. Journal of Materials Research and Technology, 2021, 13: 2055-2065 [35] BON V V, ORYSYK S I, PEKHNYO V I, et al. Synthesis and spectroscopic investigations of Rh(Ⅲ) and Pd(Ⅱ) complex compounds with N-(pyridine-2-yl)morpholine-4-carbothioamide[J]. Polyhedron, 2007, 26(13): 2935-2941 [36] CORBI P P, CAGNIN F, MASSABNI A C. Chemical and spectroscopic studies of a new palladium(Ⅱ) complex with N-acetyl-L-cysteine[J]. Journal of Coordination Chemistry, 2008, 61(22): 3666-3673 [37] 何武强. 硼氢化钠还原氯钯酸制备纳米钯[J]. 河北化工, 2010(12): 28-29 HE Wuqiang. Prepare palladium nano acid by sodium borohydride reduction of palladium chloride[J]. Hebei Chemical Engineering and Industry, 2010(12): 28-29(in Chinese) [38] CAI M, ZHANG H, MAN B, et al. Synthesis of a vinyl chloride monomer via acetylene hydrochlorination with a ruthenium-based N-heterocyclic carbene complex catalyst[J]. Catalysis Science & Technology, 2020, 10(11): 3552-3560 [39] 胡嘉琦, 王富民, 张旭斌. 氮氧吡啶-钌基催化剂催化乙炔氢氯化的研究[J]. 化学工业与工程, 2023, 40(4): 1-14 HU Jiaqi, WANG Fumin, ZHANG Xubin. Study on Ru-based catalysts coordinated with pyridine N-oxide for acetylene hydrochlorination[J]. Chemical Industry and Engineering, 2023, 40(4): 1-14(in Chinese) [40] CEN Y, YUE Y, WANG S, et al. Adsorption behavior and electron structure engineering of Pd-based catalysts for acetylene hydrochlorination[J]. Catalysts, 2019, 10(1): 24
|