[1] ZHONG J, XU Y, LIU Z. Heterogeneous non-mercury catalysts for acetylene hydrochlorination:Progress, challenges, and opportunities[J]. Green Chemistry, 2018, 20(11):2412-2427 [2] JOHNSTON P, CARTHEY N, HUTCHINGS G J. Discovery, development, and commercialization of gold catalysts for acetylene hydrochlorination[J]. Journal of the American Chemical Society, 2015, 137(46):14548-14557 [3] DAVIES C J, MIEDZIAK P J, BRETT G L, et al. Vinyl chloride monomer production catalysed by gold:A review[J]. Chinese Journal of Catalysis, 2016, 37(10):1600-1607 [4] SCHOBERT H. Production of acetylene and acetylene-based chemicals from coal[J]. Chemical Reviews, 2014, 114(3):1743-1760 [5] XU H, LUO G. Green production of PVC from laboratory to industrialization:State-of-the-art review of heterogeneous non-mercury catalysts for acetylene hydrochlorination[J]. Journal of Industrial and Engineering Chemistry, 2018, 65:13-25 [6] MACKEY T K, CONTRERAS J T, LIANG B A. The Minamata Convention on Mercury:Attempting to address the global controversy of dental amalgam use and mercury waste disposal[J]. Science of the Total Environment, 2014, 472:125-129 [7] NKOSI B, COVILLE N J, HUTCHINGS G J. Vapour phase hydrochlorination of acetylene with group VIII and IB metal chloride catalysts[J]. Applied Catalysis, 1988, 43(1):33-39 [8] HUTCHINGS G J. Vapor phase hydrochlorination of acetylene:Correlation of catalytic activity of supported metal chloride catalysts[J]. Journal of Catalysis, 1985, 96(1):292-295 [9] LI H, WANG F, CAI W, et al. Hydrochlorination of acetylene using supported phosphorus-doped Cu-based catalysts[J]. Catalysis Science & Technology, 2015, 5(12):5174-5184 [10] LIAN L, WANG L, YAN H, et al. Non-mercury catalytic acetylene hydrochlorination over Bi/CNTs catalysts for vinyl chloride monomer production[J]. Journal of Materials Research and Technology, 2020, 9(6):14961-14968 [11] SHANG S, ZHAO W, WANG Y, et al. Highly efficient Ru@IL/AC to substitute mercuric catalyst for acetylene hydrochlorination[J]. ACS Catalysis, 2017, 7(5):3510-3520 [12] CAI M, ZHANG H, MAN B, et al. Synthesis of a vinyl chloride monomer via acetylene hydrochlorination with a ruthenium-based N-heterocyclic carbene complex catalyst[J]. Catalysis Science & Technology, 2020, 10(11):3552-3560 [13] LI J, ZHANG H, LI L, et al. Synergistically catalytic hydrochlorination of acetylene over the highly dispersed Ru active species embedded in P-containing ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(27):10173-10184 [14] LI J, ZHANG H, CAI M, et al. Enhanced catalytic performance of activated carbon-supported ru-based catalysts for acetylene hydrochlorination by azole ligands[J]. Applied Catalysis A:General, 2020, doi:10.1016/j.apcata.2020.117431 [15] LI H, WU B, WANG F et al. Achieving efficient and low content Ru-based catalyst for acetylene hydrochlorination based on N, N'-dimethylpropyleneurea[J]. Chem Cat Chem, 2018, 10(18):4090-4099 [16] WANG X, LAN G, CHENG Z, et al. Carbon-supported ruthenium catalysts prepared by a coordination strategy for acetylene hydrochlorination[J]. Chinese Journal of Catalysis, 2020, 41(11):1683-1691 [17] ZHU M, KANG L, SU Y, et al. MClx (M=Hg, Au, Ru; x=2, 3) catalyzed hydrochlorination of acetylene-A density functional theory study[J]. Canadian Journal of Chemistry, 2013, 91(2):120-125 [18] HAN Y, SUN M, LI W, et al. Influence of chlorine coordination number on the catalytic mechanism of ruthenium chloride catalysts in the acetylene hydrochlorination reaction:A DFT study[J]. Physical Chemistry Chemical Physics:PCCP, 2015, 17(12):7720-7730 [19] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09 (Revision D.01)[M]. Wallingford, CT:Gaussian Inc., 2010 [20] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, doi:10.1063/1.3382344 [21] EICHKORN K, WEIGEND F, TREUTLER O, et al. Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials[J]. Theoretical Chemistry Accounts, 1997, 97(1/2/3/4):119-124 [22] MIEHLICH B, SAVIN A, STOLL H, et al. Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr[J]. Chemical Physics Letters, 1989, 157(3):200-206 [23] WEIGEND F, HÄSER M, PATZELT H, et al. RI-MP2:Optimized auxiliary basis sets and demonstration of efficiency[J]. Chemical Physics Letters, 1998, 294(1/2/3):143-152 [24] WEIGEND F, AHLRICHS R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn:Design and assessment of accuracy[J]. Physical Chemistry Chemical Physics:PCCP, 2005, 7(18):3297-3305 [25] ZHAO Y, TRUHLAR D G. Improved description of nuclear magnetic resonance chemical shielding constants using the M06-L meta-generalized-gradient-approximation density functional[J]. The Journal of Physical Chemistry A, 2008, 112(30):6794-6799 [26] ZHAO Y, TRUHLAR D G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions[J]. The Journal of Chemical Physics, 2006, doi:10.1063/1.2370993 [27] Legault C Y. CYLview, 1.0b[EB/L]. Université de Sherbrooke, 2009, http://www.cylview.org [28] LU T, CHEN F. Multiwfn:A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5):580-592 [29] LIU Y, ZHANG H, DONG Y, et al. Characteristics of activated carbons modulate the catalytic performance for acetylene hydrochlorination[J]. Molecular Catalysis, 2020, doi:10.1016/j.mcat.2019.110707 [30] QIU Y, ALI S, LAN G, et al. Defect-rich activated carbons as active and stable metal-free catalyst for acetylene hydrochlorination[J]. Carbon, 2019, 146:406-412 [31] KAISER S K, LIN R H, KRUMEICH F, et al. Preserved in a shell:High-performance graphene-confined ruthenium nanoparticles in acetylene hydrochlorination[J]. Angewandte Chemie International Edition, 2019, 58(35):12297-12304 [32] PU Y, ZHANG J, YU L, et al. Active ruthenium species in acetylene hydrochlorination[J]. Applied Catalysis A:General, 2014, 488:28-36 [33] CUI X, CHEN L, WANG Y, et al. Fabrication of hierarchically porous RuO2-CuO/Al-ZrO2 composite as highly efficient catalyst for ammonia-selective catalytic oxidation[J]. ACS Catalysis, 2014, 4(7):2195-2206 [34] ZHANG H, LI W, JIN Y, et al. Ru-co(Ⅲ)-Cu(Ⅱ)/SAC catalyst for acetylene hydrochlorination[J]. Applied Catalysis B:Environmental, 2016, 189:56-64 [35] ZHAO W, LI W, ZHANG J. Ru/N-AC catalyst to produce vinyl chloride from acetylene and 1, 2-dichloroethane[J]. Catalysis Science & Technology, 2016, 6(5):1402-1409 [36] LI X, ZHANG H, MAN B, et al. Activated carbon-supported tetrapropylammonium perruthenate catalysts for acetylene hydrochlorination[J]. Catalysts, 2017, doi:10.3390/catal7100311 [37] MAN B, ZHANG H, ZHANG C, et al. Effect of Ru/Cl ratio on the reaction of acetylene hydrochlorination[J]. New Journal of Chemistry, 2017, 41(23):14675-14682 [38] WANG X, LAN G, LIU H, et al. Effect of acidity and ruthenium species on catalytic performance of ruthenium catalysts for acetylene hydrochlorination[J]. Catalysis Science & Technology, 2018, 8(23):6143-6149 [39] NKOSI B, ADAMS M D, COVILLE N J, et al. Hydrochlorination of acetylene using carbon-supported gold catalysts:A study of catalyst reactivation[J]. Journal of Catalysis, 1991, 128(2):378-386 [40] LI X, LI P, PAN X, et al. Deactivation mechanism and regeneration of carbon nanocomposite catalyst for acetylene hydrochlorination[J]. Applied Catalysis B:Environmental, 2017, 210:116-120 [41] HAN Y, ZHANG H, LI Y, et al. Ruthenium catalyst coordinated with[N4444+] [PF-6] ionic liquid for acetylene hydrochlorination[J]. Catalysis Today, 2020, 355:205-213 [42] CEN Y, YUE Y, WANG S, et al. Adsorption behavior and electron structure engineering of Pd-based catalysts for acetylene hydrochlorination[J]. Catalysts, 2019, doi:10.3390/catal10010024
|