[1] HAGE R, LIENKE A. Applications of transition-metal catalysts to textile and wood-pulp bleaching[J]. Angewandte Chemie International Edition, 2006, 45(2): 206-222 [2] BANSEMIR K, DISCH K, HACHMANN K, et al. Synergistic disinfectant compsns. for skin and mucosa: DE3702983-A; EP252278-A; JP62292709-A; US4900721-A; CA1277899-C; JP96018939-B2; EP252278-B1; DE3752210-G; ES2118705-T3[P]. [3] GUAN R, YUAN X, WU Z, et al. Principle and application of hydrogen peroxide based advanced oxidation processes in activated sludge treatment: A review[J]. Chemical Engineering Journal, 2018, 339: 519-530 [4] 汤琪, 刘攀, 涂胜, 等. H2O2改性稻杆作为Pb2+吸附剂的工艺优化[J]. 化学工业与工程, 2020, 37(3): 39-44, 59 TANG Qi, LIU Pan, TU Sheng, et al. Technics optimization of hydrogen peroxide modified rice straw as Pb(Ⅱ) adsorbent[J]. Chemical Industry and Engineering, 2020, 37(3): 39-44, 59(in Chinese) [5] HERAVI M M, GHALAVAND N, HASHEMI E. Hydrogen peroxide as a green oxidant for the selective catalytic oxidation of benzylic and heterocyclic alcohols in different media: An overview[J]. Chemistry, 2020, 2(1): 101-178 [6] SHI X, BACK S, GILL T M, et al. Electrochemical synthesis of H2O2 by two-electron water oxidation reaction[J]. Chem, 2021, 7(1): 38-63 [7] 赵瑾, 姜天翔, 曹军瑞, 等. 内循环式铁碳微电解/H2O2耦合工艺处理多晶硅有机废水[J]. 化学工业与工程, 2021, 38(2): 88-95 ZHAO Jin, JIANG Tianxiang, CAO Junrui, et al. Treatment of polysilicon organic wastewater by inside-circle coupling technology of Fe/C micro-electrolysis and H2O2[J]. Chemical Industry and Engineering, 2021, 38(2): 88-95(in Chinese) [8] BELYKH L B, SKRIPOV N I, STERENCHUK T P, et al. Role of phosphorus in the formation of selective palladium catalysts for hydrogenation of alkylanthraquinones[J]. Applied Catalysis A: General, 2020, 589: 117293 [9] ZHOU J, CHEN J, YANG Z, et al. Pd nanoparticles anchored and stabilized on N-doped with enhanced catalytic performance in 2-ethyl-9, 10 anthraquinone hydrogenation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647: 128977 [10] LIANG J, WANG F, LI W, et al. Highly dispersed and stabilized Pd species on H2 pre-treated Al2O3 for anthraquinone hydrogenation and H2O2 production[J]. Molecular Catalysis, 2022, 524: 112264 [11] WANG L, ZHANG Y, MA Q, et al. Hydrogenation of alkyl-anthraquinone over hydrophobically functionalized Pd/SBA-15 catalysts[J]. RSC Advances, 2019, 9(59): 34581-34588 [12] 陈冠群, 周涛, 曾平, 等. 蒽醌法生产双氧水的研究进展[J]. 化学工业与工程, 2006, 23(6): 550-555, 561 CHEN Guanqun, ZHOU Tao, ZENG Ping, et al. Progress in production of hydrogen peroxide through anthroquinone[J]. Chemical Industry and Engineering, 2006, 23(6): 550-555, 561(in Chinese) [13] GUO Y, DAI C, LEI Z. Hydrogenation of 2-ethylanthraquinone with bimetallic monolithic catalysts: An experimental and DFT study[J]. Chinese Journal of Catalysis, 2018, 39(6): 1070-1080 [14] GUO Y, DONG Y, LEI Z, et al. High-performance Pd-N (N=Ga or Ag) bimetallic monolithic catalyst for the hydrogenation of 2-ethylanthraquinone: Experimental and DFT studies[J]. Molecular Catalysis, 2021, 509: 111604 [15] YUAN E, WU C, HOU X, et al. Synergistic effects of second metals on performance of (Co, Ag, Cu)-doped Pd/Al2O3 catalysts for 2-ethyl-anthraquinone hydrogenation[J]. Journal of Catalysis, 2017, 347: 79-88 [16] BAI H, FANG X, PENG C. Synthesis of tailored egg-shell Pd@Al2O3 catalyst for catalytic hydrogenation of 2-alkylanthraquinone[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(8): 7700-7707 [17] LI W, WANG F, ZHANG X, et al. Highly dispersed Pd nanoparticles supported on γ-Al2O3 modified by minimal 3-aminopropyltriethoxysilane as effective catalysts for 2-ethyl-anthraquinone hydrogenation[J]. Applied Catalysis A: General, 2021, 619: 118124 [18] WANG F, JIA Y, LIANG J, et al. Intensifying strategy of ionic liquids for Pd-based catalysts in anthraquinone hydrogenation[J]. Catalysis Science & Technology, 2022, 12(6): 1766-1776 [19] FENG J, WANG H, EVANS D G, et al. Catalytic hydrogenation of ethylanthraquinone over highly dispersed eggshell Pd/SiO2-Al2O3 spherical catalysts[J]. Applied Catalysis A: General, 2010, 382(2): 240-245 [20] LI A, WANG Y, REN J, et al. Enhanced catalytic activity and stability over P-modified alumina supported Pd for anthraquinone hydrogenation[J]. Applied Catalysis A: General, 2020, 593: 117422 [21] LI Y, MENG X, LUO R, et al. Aluminum/Tin-doped UiO-66 as Lewis acid catalysts for enhanced glucose isomerization to fructose[J]. Applied Catalysis A: General, 2022, 632: 118501 [22] 刘心韵, 李琳琳, 付海, 等. AlCl3/SBA-15催化尼泊金丁酯的合成[J]. 化学工业与工程, 2019, 36(6): 30-36 LIU Xinyun, LI Linlin, FU Hai, et al. Synthesis of butylparaben catalyzed by AlCl3/SBA-15[J]. Chemical Industry and Engineering, 2019, 36(6): 30-36(in Chinese) [23] LUO M, WANG Q, LI G, et al. Enhancing tetralin hydrogenation activity and sulphur-tolerance of Pt/MCM-41 catalyst with Al(NO3)3, AlCl3 and Al(CH3)3[J]. Catalysis Science & Technology, 2014, 4(7): 2081-2090 [24] LIANG W, DONG J, YAO M, et al. Pd-Al/AC catalysts for direct synthesis of H2O2 with high productivity[J]. ChemistrySelect, 2020, 5(42): 12910-12914 [25] DENG R, YOU K, YI L, et al. Solvent-free, low-temperature, highly efficient catalytic nitration of toluene with NO2 promoted by molecular oxygen over immobilized AlCl3-SiO2[J]. Industrial & Engineering Chemistry Research, 2018, 57(39): 12993-13000 [26] WEN J, YOU K, ZHAO F, et al. AlCl3 immobilized on silicic acid as efficient Lewis acid catalyst for highly selective preparation of dicyclohexylamine from the vapor phase hydroamination of cyclohexene with cyclohexylamine[J]. Catalysis Communications, 2020, 145: 106112 [27] BAI P, XING W, ZHANG Z, et al. Facile synthesis of thermally stable mesoporous crystalline alumina by using a novel cation-anion double hydrolysis method[J]. Materials Letters, 2005, 59(24/25): 3128-3131 [28] LU C, LV J, XU L, et al. Crystalline nanotubes of γ-AlOOH and γ-Al2O3: Hydrothermal synthesis, formation mechanism and catalytic performance[J]. Nanotechnology, 2009, 20(21): 215604 [29] 王佳萌, 刘凡吉, 宋珍, 等. 空心微球氧化铝负载Pt-In催化异丁烷脱氢研究[J]. 化学工业与工程, 2022, 39(4): 30-38 WANG Jiameng, LIU Fanji, SONG Zhen, et al. Study on isobutane dehydrogenation catalyzed by Pt-In supported on hollow microsphere alumina[J]. Chemical Industry and Engineering, 2022, 39(4): 30-38(in Chinese) [30] YU I, XIONG X, TSANG D C, et al. Aluminium-biochar composites as sustainable heterogeneous catalysts for glucose isomerisation in a biorefinery[J]. Green Chemistry, 2019, 21(6): 1267-1281 [31] 卢攀峰, 江玲, 米普科, 等. Al2O3固载AlCl3催化剂的固载结构研究[J]. 石油化工, 2010, 39(6): 616-619 LU Panfeng, JIANG Ling, MI Puke, et al. Structure of immobilized AlCl3 catalyst with Al2O3 as support[J]. Petrochemical Technology, 2010, 39(6): 616-619(in Chinese) [32] WU P, SONG L, WANG Y, et al. High-performance benzyl alcohol oxidation catalyst: Au-Pd alloy with ZrO2 as promoter[J]. Applied Surface Science, 2021, 537: 148059 [33] ZHANG J, GAO K, WANG S, et al. Performance of bimetallic PdRu catalysts supported on gamma alumina for 2-ethylanthraquinone hydrogenation[J]. RSC Advances, 2017, 7(11): 6447-6456 [34] HONG R, HE Y, FENG J, et al. Fabrication of supported Pd-Ir/Al2O3 bimetallic catalysts for 2-ethylanthraquinone hydrogenation[J]. AIChE Journal, 2017, 63(9): 3955-3965 [35] YUAN E, WU C, LIU G, et al. One-pot synthesis of Pd nanoparticles on ordered mesoporous Al2O3 for catalytic hydrogenation of 2-ethyl-anthraquinone[J]. Applied Catalysis A: General, 2016, 525: 119-127 [36] LI X, SU H, LI D, et al. Highly dispersed Pd/AlPO-5 catalyst for catalytic hydrogenation of 2-ethylanthraquinone[J]. Applied Catalysis A: General, 2016, 528: 168-174 [37] HAN Y, HE Z, GUAN Y C, et al. Catalytic performance of PdAu/Al2O3 catalyst with special structural and electronic properties in the 2-ethylanthraquinone hydrogenation reaction[J]. Acta Physico-Chimica Sinica, 2015, 31(4): 729-737 [38] WANG Y, PENG M, YE C, et al. Enhanced catalytic performance of Pd-Ga bimetallic catalysts for 2-ethylanthraquinone hydrogenation[J]. Applied Organometallic Chemistry, 2019, 33(9): e5076 [39] GUO Y, DAI C, LEI Z. Hydrogenation of 2-ethylanthraquinone on Pd-La/SiO2/cordierite and Pd-Zn/SiO2/cordierite bimetallic monolithic catalysts[J]. Chemical Engineering and Processing-Process Intensification, 2019, 136: 211-225
|