[1] D’INNOCENZO V, GRANCINI G, ALCOCER M, et al. Excitons versus free charges in organo-lead tri-halide perovskites[J]. Nature Communications, 2014, doi: 10.1038/ncomms4586 [2] HEO J H, IM S H. Highly reproducible, efficient hysteresis-less CH3NH3PbI(3-x)Cl(x) planar hybrid solar cells without requiring heat-treatment[J]. Nanoscale, 2016, 8(5): 2554-2560 [3] JEON N, NOH J, YANG W, et al. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015, 517(7535): 475-478 [4] IM J H, LEE C R, LEE J W, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscale, 2011, 3(10): 4088-4093 [5] JEON N J, NOH J H, KIM Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nature Materials, 2014, 13(9): 897-903 [6] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051 [7] JEONG J, KIM M, SEO J, et al. Pseudo-halide anion engineering for alpha-FAPbI3 perovskite solar cells[J]. Nature, 2021, doi: 10.1038/s41586-021-03406-5 [8] JEONG M, CHOI I W, GO E M, et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss[J]. Science, 2020, 369(6511): 1615-1620 [9] JIANG Q, ZHAO Y, ZHANG X, et al. Surface passivation of perovskite film for efficient solar cells[J]. Nature Photonics, 2019, 13(7): 459-461 [10] LU H, LIU Y, AHLAWAT P, et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells[J]. Science, 2020, 370(6512): 73-75 [11] SHI D, ADINOLFI V, COMIN R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 2015, 347(6221): 519-522 [12] SON D Y, KIM S G, SEO J Y, et al. Universal approach toward hysteresis-free perovskite solar cell via defect engineering[J]. Journal of the American Chemical Society, 2018, 140(4): 1358-1364 [13] STOUMPOS C C, MALLIAKAS C D, KANATZIDIS M G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and tear-Infrared photoluminescent properties[J]. Inorganic Chemistry, 2013, 52(15): 9019-9038 [14] ZHANG Y, KIM S G, LEE D K, et al. CH3NH3PbI3 and HC(NH2)2PbI3 powders synthesized from low-grade PbI2: Single precursor for high-efficiency perovskite solar cells[J]. ChemSusChem, 2018, 11(11): 1813-1823 [15] STRANKS S D, EPERON G E, GRANCINI G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156): 341-344 [16] PELLET N, GAO P, GREGORI G, et al. Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting[J]. Angewandte Chemie International Edition, 2014, 53(12): 3151-3157 [17] JUNG E H, JEON N J, PARK E Y, et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) [J]. Nature, 2019, 567(7749): 510-512 [18] KIM M, KIM G H, LEE T K, et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells[J]. Joule, 2019, 3(9): 2179-2192 [19] KIM G, MIN H, LEE K S, et al. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells[J]. Science, 2020, 370(6512): 108-112 [20] LI F, ZHANG Y, JIANG K, et al. A novel strategy for scalable high-efficiency planar perovskite solar cells with new precursors and cation displacement approach[J]. Advanced Materials, 2018, doi: 10.1002/adma.201804454 [21] ZHANG Y, LI F, JIANG K, et al. From 2D to 3D: A facile and effective procedure for fabrication of planar CH3NH3PbI3 perovskite solar cells[J]. Journal of Materials Chemistry A, 2018, 6(37): 17867-17873 [22] FEI C, ZHOU M, OGLE J, et al. Self-assembled propylammonium cations at grain boundaries and the film surface to improve the efficiency and stability of perovskite solar cells[J]. Journal of Materials Chemistry A, 2019, 7(41): 23739-23746 [23] YAO D, ZHANG C, ZHANG S, et al. 2D-3D mixed organic-inorganic perovskite layers for solar cells with enhanced efficiency and stability induced by n-propylammonium iodide additives[J]. ACS Applied Materials & Interfaces, 2019, 11(33): 29753-29764 [24] CHEN Y, LEI Y, LI Y, et al. Strain engineering and epitaxial stabilization of halide perovskites[J]. Nature, 2020, 577(7789): 208-210 [25] REN Y, ZHANG N, WANG Q, et al. Restricting δ-phase transformation of HC(NH2)2PbI3 via iodine-vacancy filling for efficient perovskite solar cells[J]. Science China Materials, 2020, 63(6): 1015-1023 [26] JIANG Q, ZHANG L, WANG H, et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells[J]. Nature Energy, 2017, 2(1):1-7 [27] GONG X, GUAN L, PAN H, et al. Highly efficient perovskite solar cells via nickel passivation[J]. Advanced Functional Materials, 2018, doi: 10.1002/adfm.201804286 [28] LIU W, LIU N, JI S, et al. perfection of perovskite grain boundary passivation by rhodium incorporation for efficient and stable solar cells[J]. Nano-Micro Letters, 2020, 12(1): 1-11 [29] ZHENG X, CHEN B, DAI J, et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations[J]. Nature Energy, 2017, doi: 10.1038/nenergy.2017.102 [30] HUANG J, YUAN Y, SHAO Y, et al. Understanding the physical properties of hybrid perovskites for photovoltaic applications[J]. Nature Reviews Materials, 2017, doi: 10.1038/natrevmats.2017.42 [31] NOEL N K, ABATE A, STRANKS S D, et al. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites[J]. ACS Nano, 2014, 8(10): 9815-9821 [32] DE QUILETTES D W, VORPAHL S M, STRANKS S D, et al. Impact of microstructure on local carrier lifetime in perovskite solar cells[J]. Science, 2015, 348(6235): 683-686 [33] LV M, ZHU J, HUANG Y, et al. Colloidal CuInS2 quantum dots as inorganic hole-transporting material in perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2015, 7(31): 17482-17488 [34] ZHU Z, CHUEH C, LIN F, et al. Enhanced ambient stability of efficient perovskite solar cells by employing a modified fullerene cathode interlayer[J]. Advanced Science, 2016, doi: 10.1002/ADVS.201600027 [35] YADAV P, ALOTAIBI M H, ARORA N, et al. Influence of the nature of a cation on dynamics of charge transfer processes in perovskite solar cells[J]. Advanced Functional Materials, 2018, doi: 10.1002/adfm.201706073
|