[1] O'Reagan B C, Gräetzel M. High-Efficiency solar cell based on dye-sensitized colloidal TiO2 film[J]. Nature, 1991, 353: 737-746
[2] Mathew S, Yella A, Gao P, et al. Dye-Sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers[J]. Nature Chemistry, 2014, 6(3): 242-247
[3] Tennakone K, Kumara G, Kumarasinghe A R, et al. A dye-sensitized nano-porous solid-state photovoltaic cell[J]. Semiconductor Science and Technology, 1995, 10(12): 1 689-1 693
[4] O'Regan B C, Lenzmann F. Charge transport and recombination in a nanoscale interpenetrating network of n-type and p-type semiconductors: Transient photocurrent and photovoltage studies of TiO2/Dye/CuSCN photovoltaic cells[J]. The Journal of Physical Chemistry B, 2004, 108(14): 4 342-4 350
[5] Bach U, Lupo D, Comte P, et al. Solid-State dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies[J]. Nature, 1998, 395(6 702): 583-585
[6] Jiang K J, Manseki K, Yu Y, et al. Photovoltaics based on hybridization of effective dye-sensitized titanium oxide and hole-conductive polymer P3HT[J]. Advanced Functional Materials, 2009, 19(15): 2 481-2 485
[7] Chung I, Lee B, He J, et al. All-Solid-State dye-sensitized solar cells with high efficiency[J]. Nature, 2012, 485(7 399): 486-489
[8] Zhang S, Lanty G, Lauret J S, et al. Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors[J]. Acta Materialia, 2009, 57(11): 3 301-3 309
[9] Agranovich V M, Gartstein Y N, Litinskaya M. Hybrid resonant organic-inorganic nanostructures for optoelectronic applications[J]. Chemical Reviews, 2011, 111(9): 5 179-5 214
[10] Kagan C R, Mitzi D B, Dimitrakopoulos C D. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors[J]. Science, 1999, 286(5 441): 945-947
[11] 杨志胜, 杨立功, 吴刚, 等. 基于有机/无机杂化钙钛矿有序结构的异质结及其光伏性能的研究[J]. 化学学报, 2011, 69(6): 627-632 Yang Zhisheng, Yang Ligong, Wu Gang, et al. A heterojunction based on well-ordered organic-inorganic hybrid perovskite and its photovoltaic performance[J]. Acta Chimica Sinica, 2011, 69(6): 627-632(in Chinese)
[12] Cui X, Jiang K, Huang J, et al. Electrodeposition of PbO and its in situ conversion to CH3NH3PbI3 for mesoscopic perovskite solar cells[J]. Chemical Communications, 2015, 51(8): 1 457-1 460
[13] Willett R, Place H, Middleton M. Crystal structures of three new copper (Ⅱ) halide layered perovskites: Structural, crystallographic, and magnetic correlations[J]. Journal of the American Chemical Society, 1988, 110(26): 8 639-8 650
[14] Liang K, Mitzi D B, Prikas M T. Synthesis and characterization of organic-inorganic perovskite thin films prepared using a versatile two-step dipping technique[J]. Chemistry of Materials, 1998, 10(1): 403-411
[15] Lee B, Stoumpos C C, Zhou N, et al. Air-Stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor[J]. Journal of the American Chemical Society, 2014, 136(43): 15 379-15 385
[16] Xia J, Masaki N, Lira-Cantu M, et al. Influence of doped anions on poly (3, 4-ethylenedioxythiophene) as hole conductors for iodine-free solid-state dye-sensitized solar cells[J]. Journal of the American Chemical Society, 2008, 130(4): 1 258-1 263
[17] Dualeh A, Moehl T, Tetreault N, et al. Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells[J]. ACS Nano, 2013, 8(1): 362-373
[18] Yu L, Fan K, Duan T, et al. Efficient panchromatic light harvesting with Co-sensitization of Zinc phthalocyanine and bithiophene-based organic dye for dye-sensitized solar cells[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(4): 718-725
[19] Hua Y, Chang S, Huang D, et al. Significant improvement of dye-sensitized solar cell performance using simple phenothiazine-based dyes[J]. Chemistry of Materials, 2013, 25(10): 2 146-2 153
[20] Xia J, Masaki N, Lira-Cantu M, et al. Influence of doped anions on poly (3, 4-ethylenedioxythiophene) as hole conductors for iodine-free solid-state dye-sensitized solar cells[J]. Journal of the American Chemical Society, 2008, 130(4): 1 258-1 263
|