[1] 周璟,盛红梅,安黎哲.极端微生物的多样性及应用[J].冰川冻土, 2007, 29(2):286-291 ZHOU Jing, SHENG Hongmei, AN Lizhe. Diversity of extremophilic miroorganisms and their applications[J]. Journal of Glaciology and Geocryology, 2007, 29(2):286-291(in Chinese)
[2] FU X, TAN D, AIBAIDULA G, et al. Development of Halomonas TD01 as a host for open production of chemicals[J]. Metabolic Engineering, 2014, 23:78-91
[3] TAN D, XUE Y, AIBAIDULA G, et al. Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01[J]. Bioresource Technology, 2011, 102(17):8130-8136
[4] QIN Q, LING C, ZHAO Y, et al. CRISPR/Cas9 editing genome of extremophile halomonas spp[J]. Metabolic Engineering, 2018, 47:219-229
[5] YIN J, FU X, WU Q, et al. Development of an enhanced chromosomal expression system based on porin synthesis operon for halophile Halomonas sp[J]. Applied Microbiology and Biotechnology, 2014, 98(21):8987-8997
[6] SHEN R, NING Z, LAN Y, et al. Manipulation of polyhydroxyalkanoate granular sizes in halomonas bluephagenesis[J]. Metabolic Engineering, 2019, 54:117-126
[7] 袁恺,周卫强,彭超,等.微生物发酵法生产聚羟基脂肪酸酯的研究进展[J].生物工程学报, 2021, 37(2):384-394 YUAN Kai, ZHOU Weiqiang, PENG Chao, et al. Engineering progress in microbial production of polyhydroxyalkanoates[J]. Chinese Journal of Biotechnology, 2021, 37(2):384-394(in Chinese)
[8] OSO M S D, MAURICIO-IGLESIAS M, HOSPIDO A. Evaluation and optimization of the environmental performance of PHA downstream processing[J]. Chemical Engineering Journal, 2021, doi:10.1016/j.cej.2020.127687
[9] DIAS F, LEZCANO M F, ÁLVAREZ G, et al. Polyhydroxybutyrate (PHB) tubular scaffolds for nerve regeneration[J]. The FASEB Journal, 2021, doi:10.1096/fasebj.2021.35.S1.01856
[10] 杜鹤童,赵倚晴,陈金春,等.基于嗜盐微生物合成生物学的下一代工业生物技术[J].生命科学, 2019, 31(4):385-390 DU Hetong, ZHAO Yiqing, CHEN Jinchun, et al. Next generation industrial biotechnology based on synthetic biology of halophiles[J]. Chinese Bulletin of Life Sciences, 2019, 31(4):385-390(in Chinese)
[11] 李书廷,洪坤强,汪保卫,等.大肠杆菌乙酸耐受性菌株的构建及其耐受机制研究进展[J].微生物学通报, 2020, 47(12):4250-4259 LI Shuting, HONG Kunqiang, WANG Baowei, et al. Advances in construction of acetic acid tolerance Escherichia coli[J]. Microbiology China, 2020, 47(12):4250-4259(in Chinese)
[12] LIM H G, LEE J H, NOH M H, et al. Rediscovering acetate metabolism:Its potential sources and utilization for biobased transformation into value-added chemicals[J]. Journal of Agricultural and Food Chemistry, 2018, 66(16):3998-4006
[13] YANG H, ZHANG C, LAI N, et al. Efficient isopropanol biosynthesis by engineered Escherichia coli using biologically produced acetate from syngas fermentation[J]. Bioresource Technology, 2020, doi:10.1016/j.biortech.2019.122337
[14] LI W, CHEN J, LIU C, et al. Microbial production of glycolate from acetate by metabolically engineered escherichia coli[J]. Journal of Biotechnology, 2019, 291:41-45
[15] ZHAO H, ZHANG H, CHEN X, et al. Novel T7-like expression systems used for halomonas[J]. Metabolic Engineering, 2017, 39:128-140
[16] CHEN X, YIN J, YE J, et al. Engineering halomonas bluephagenesis TD01 for non-sterile production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate)[J]. Bioresource Technology, 2017, 244:534-541
[17] MA H, ZHAO Y, HUANG W, et al. Rational flux-tuning of halomonas bluephagenesis for co-production of bioplastic PHB and ectoine[J]. Nature Communications, 2020, doi:10.1038/s41467-020-17223-3
[18] YE J, HU D, CHE X, et al. Engineering of Halomonas bluephagenesis for low cost production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose[J]. Metabolic Engineering, 2018, 47:143-152
[19] KIEFER D, MERKEL M, LILGE L, et al. From acetate to bio-based products:Underexploited potential for industrial biotechnology[J]. Trends in Biotechnology, 2021, 39(4):397-411
[20] 刘冬冬.强化葡萄糖代谢途径提高L-赖氨酸发酵水平的研究[D].江苏无锡:江南大学, 2017 LIU Dongdong. Increasing the fermentation level of L-lysine via enhancing glucose metabolism pathways[D]. Jiangsu Wuxi:Jiangnan University, 2017(in Chinese)
[21] LI Y, HUANG B, WU H, et al. Production of succinate from acetate by metabolically engineered escherichia coli[J]. ACS Synthetic Biology, 2016, 5(11):1299-1307
[22] FERNÁNDEZ-SANDOVAL M T, HUERTA-BERISTAIN G, TRUJILLO-MARTINEZ B, et al. Laboratory metabolic evolution improves acetate tolerance and growth on acetate of ethanologenic Escherichia coli under non-aerated conditions in glucose-mineral medium[J]. Applied Microbiology and Biotechnology, 2012, 96(5):1291-1300
[23] 马婉晴,章珍,刘悦琳,等.大肠杆菌分解代谢产物阻遏效应研究进展[J].遗传, 2010, 32(6):571-576 MA Wanqing, ZHANG Zhen, LIU Yuelin, et al. Advances in mechanism of Escherichia coli carbon catabolite repression[J]. Hereditas, 2010, 32(6):571-576(in Chinese)
|