[1] Slater M D, Kim D, Lee E, et al. Sodium-Ion batteries[J]. Advanced Functional Materials, 2013, 23(8):947-958
[2] 胡明祥, 吕瑞涛. 钠离子电池碳基负极材料研究进展[J]. 齐鲁工业大学学报:自然科学版, 2017, 31(1):1-8 Hu Mingxiang, Lv Ruitao. Recent progress on carbon-based anode materials for sodium-ion battery[J]. Journal of Qilu University of Technology:Natural Science Edition, 2017, 31(1):1-8(in Chinese)
[3] Ge P. Electrochemical intercalation of sodium in graphite[J]. Solid State Ionics, 1988, (28/30):1172-1175
[4] Stevens D A, Dahn J R. The mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of the Electrochemical Society, 2001, 148(8):A803-A811
[5] Sangster J. C-Na (carbon-sodium) system[J]. Journal of Phase Equilibria and Diffusion, 2007, 28(6):571-579
[6] Nobuhara K, Nakayama H, Nose M, et al. First-Principles study of alkali metal-graphite intercalation compounds[J]. Journal of Power Sources, 2013, 243:585-587
[7] Liu Y, Merinov B V, Goddard W A. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals[J]. Proceedings of the National Academy of Sciences, 2016, 113(14):3735-3739
[8] Flandrois S, Simon B. Carbon materials for lithium-ion rechargeable batteries[J]. Carbon, 1999, 37(2):165-180
[9] Jache B, Adelhelm P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena[J]. Angewandte Chemie International Edition, 2014, 53(38):10169-10173
[10] Kim H, Hong J, Park Y U, et al. Sodium storage behavior in natural graphite using ether-based electrolyte systems[J]. Advanced Functional Materials, 2015, 25(4):534-541
[11] Kim H, Hong J, Yoon G, et al. Sodium intercalation chemistry in graphite[J]. Energy & Environmental Science, 2015, 8(10):2963-2969
[12] Zhu Z, Cheng F, Hu Z, et al. Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries[J]. Journal of Power Sources, 2015, 293:626-634
[13] Tanaike O, Inagaki M. Effect of ether coordination for sodium intercalation into poly(vinyl chloride) cokes with different graphitization degree[J]. Synthetic Metals, 1998, 96(2):109-116
[14] Cao Y, Xiao L, Sushko M L, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Letters, 2012, 12(7):3783-3787
[15] Wen Y, He K, Zhu Y, et al. Expanded graphite as superior anode for sodium-ion batteries[J]. Nature Communications, 2014, 5:4033, doi:10.1038/ncomms5033
[16] Doeff M M. Electrochemical insertion of sodium into carbon[J]. Journal of the Electrochemical Society, 1993, 140(12):L169-L170
[17] Alcántara R, Jiménez-Mateos J M, Lavela P, et al. Carbon black:A promising electrode material for sodium-ion batteries[J]. Electrochemistry Communications, 2001, 3(11):639-642
[18] Pol V G, Lee E, Zhou D, et al. Spherical carbon as a new high-rate anode for sodium-ion batteries[J]. Electrochimica Acta, 2014, 127:61-67
[19] Wenzel S, Hara T, Janek J, et al. Room-Temperature sodium-ion batteries:Improving the rate capability of carbon anode materials by templating strategies[J]. Energy & Environmental Science, 2011, 4(9):3342-3345
[20] Luo W, Jian Z, Xing Z, et al. Electrochemically expandable soft carbon as anodes for Na-ion batteries[J]. ACS Central Science, 2015, 1(9):516-522
[21] Li Y, Hu Y, Li H, et al. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(1):96-104
[22] Li Y, Mu L, Hu Y, et al. Pitch-Derived amorphous carbon as high performance anode for sodium-ion batteries[J]. Energy Storage Materials, 2016, 2:139-145
[23] Li Y, Hu Y, Qi X, et al. Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode:Towards practical applications[J]. Energy Storage Materials, 2016, 5:191-197
[24] Stevens D A, Dahn J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. Journal of the Electrochemical Society, 2000, 147(4):1271-1273
[25] Lotfabad E M, Ding J, Cui K, et al. High-Density sodium and lithium ion battery anodes from banana peels[J]. ACS Nano, 2014, 8(7):7115-7129
[26] Liu P, Li Y, Hu Y, et al. A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(34):13046-13052
[27] Zhang S, Lv W, Luo C, et al. Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries[J]. Energy Storage Materials, 2016, 3:18-23
[28] Xu B, Sun N, Liu H. Facile synthesis of high performance hard carbon anode materials for sodium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(41):20560-20566
[29] Li Y, Hu Y, Titirici M, et al. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6(18):1600659, doi:10.1002/aenm. 201600659
[30] Luo W, Schardt J, Bommier C, et al. Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(36):10662-10666
[31] Prabakar S J R, Jeong J, Pyo M. Nanoporous hard carbon anodes for improved electrochemical performance in sodium ion batteries[J]. Electrochimica Acta, 2015, 161:23-31
[32] Li W, Zeng L, Yang Z, et al. Free-Standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers[J]. Nanoscale, 2014, 6(2):693-698
[33] Ding J, Wang H, Li Z, et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano, 2013, 7(12):11004-11015
[34] Thomas P, Ghanbaja J, Billaud D. Electrochemical insertion of sodium in pitch-based carbon fibres in comparison with graphite in NaClO4-ethylene carbonate electrolyte[J]. Electrochimica Acta, 1999, 45(3):423-430
[35] Tao Z, Xue J, Dahn J R. Lithium insertion in hydrogen-containing carbonaceous materials[J]. Chemistry of Materials, 1996, 8(2):389-393
[36] Li Y, Xu S, Wu X, et al. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(1):71-77
[37] Luo W, Bommier C, Jian Z, et al. Low-Surface-Area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent[J]. ACS Applied Materials & Interfaces, 2015, 7(4):2626-2631
[38] Matei Ghimbeu C, Górka J, Simone V, et al. Insights on the Na+ion storage mechanism in hard carbon:Discrimination between the porosity, surface functional groups and defects[J]. Nano Energy, 2018, 44:327-335
[39] Ponrouch A, Monti D, Boschin A, et al. Non-Aqueous electrolytes for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(1):22-42
[40] Komaba S, Murata W, Ishikawa T, et al. Electrochemical na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Advanced Functional Materials, 2011, 21(20):3859-3867
[41] Ponrouch A, Marchante E, Courty M, et al. In search of an optimized electrolyte for Na-ion batteries[J]. Energy & Environmental Science, 2012, 5(9):8572-8583
[42] Komaba S, Ishikawa T, Yabuuchi N, et al. Fluorinated ethylene carbonate as electrolyte additive for rechargeable na batteries[J]. ACS Applied Materials & Interfaces, 2011, 3(11):4165-4168
[43] Dahbi M, Nakano T, Yabuuchi N, et al. Effect of hexafluorophosphate and fluoroethylene carbonate on electrochemical performance and the surface layer of hard carbon for sodium-ion batteries[J]. Chem Electro Chem, 2016, 3(11):1856-1867
[44] Ponrouch A, Dedryvère R, Monti D, et al. Towards high energy density sodium ion batteries through electrolyte optimization[J]. Energy & Environmental Science, 2013, 6(8):2361-2369
[45] Wang Y, Hou B, Guo J, et al. An ultralong lifespan and low-temperature workable sodium-ion full battery for stationary energy storage[J]. Advanced Energy Materials, 2018, 8(18):1703252, doi:10.1002/aenm.201703252
[46] Ponrouch A, Palacín M R. On the high and low temperature performances of Na-ion battery materials:Hard carbon as a case study[J]. Electrochemistry Communications, 2015, 54:51-54
[47] Xia X, Obrovac M N, Dahn J R. Comparison of the reactivity of NaxC6 and LixC6 with non-aqueous solvents and electrolytes[J]. Electrochemical and Solid-State Letters, 2011, 14(9):A130-A133
[48] Zheng Y, Wang Y, Lu Y, et al. A high-performance sodium-ion battery enhanced by macadamia shell derived hard carbon anode[J]. Nano Energy, 2017, 39:489-498
[49] Li Z, Jian Z, Wang X, et al. Hard carbon anodes of sodium-ion batteries:Undervalued rate capability[J]. Chemical Communications, 2017, 53(17):2610-2613
[50] Qiu S, Xiao L, Sushko M L, et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Advanced Energy Materials, 2017, 7(17):1700403, doi:10.1002/aenm.201700403
[51] Stevens D A, Dahn J R. An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell[J]. Journal of the Electrochemical Society, 2000, 147(12):4428-4431
[52] Bommier C, Surta T W, Dolgos M, et al. New mechanistic insights on Na-ion storage in nongraphitizable carbon[J]. Nano Letters, 2015, 15(9):5888-5892
[53] Hong K, Long Q, Zeng R, et al. Biomass derived hard carbon used as a high performance anode material for sodium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(32):12733-12738
[54] Fu L, Tang K, Song K, et al. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance[J]. Nanoscale, 2014, 6(3):1384-1389
[55] Li D, Chen H, Liu G, et al. Porous nitrogen doped carbon sphere as high performance anode of sodium-ion battery[J]. Carbon, 2015, 94:888-894
[56] Ye J, Zang J, Tian Z, et al. Sulfur and nitrogen co-doped hollow carbon spheres for sodium-ion batteries with superior cyclic and rate performance[J]. Journal of Materials Chemistry A, 2016, 4(34):13223-13227
[57] Wang S, Xia L, Yu L, et al. Sodium ion batteries:Free-Standing nitrogen-doped carbon nanofiber films:integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability[J]. Advanced Energy Materials, 2016, 6(7):1502217, doi:10.1002/aenm.201670044
[58] Xu J, Wang M, Wickramaratne N P, et al. High-Performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams[J]. Advanced Materials, 2015, 27(12):2042-2048
[59] Ma G, Xiang Z, Huang K, et al. Graphene-Based phosphorus-doped carbon as anode material for high-performance sodium-ion batteries[J]. Particle & Particle Systems Characterization, 2017, 34(5):1600315, doi:10.1002/ppsc.201600315
[60] Yang J, Zhou X, Wu D, et al. S-Doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries[J]. Advanced Materials, 2017, 29(6):1604108, doi:10.1002/adma.201604108
[61] Zhang J, Wang D, Lv W, et al. Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase[J]. Energy & Environmental Science, 2017, 10(1):370-376
[62] Hu M, Zhou H, Gan X, et al. Ultrahigh rate sodium ion storage with nitrogen-doped expanded graphite oxide in ether-based electrolyte[J]. Journal of Materials Chemistry A, 2018, 6(4):1582-1589
|