[1] REINSEL D, GANTZ J, RYDNING J. The digitization of the world from edge to core[R]. Framinham: International Data Corporation, 2018
[2] DE SILVA P Y, GANEGODA G U. New trends of digital data storage in DNA[J]. BioMed Research International, 2016, 2016: 8072463
[3] BONNET J, COLOTTE M, COUDY D, et al. Chain and conformation stability of solid-state DNA: Implications for room temperature storage[J]. Nucleic Acids Research, 2010, 38(5): 1531-1546
[4] AKRAM F, HAQ I U, ALI H, et al. Trends to store digital data in DNA: An overview[J]. Molecular Biology Reports, 2018, 45(5): 1479-1490
[5] CARMEAN D, CEZE L, SEELIG G, et al. DNA data storage and hybrid molecular-electronic computing[J]. Proceedings of the IEEE, 2019, 107(1): 63-72
[6] EXTANCE A. How DNA could store all the world’s data[J]. Nature, 2016, 537: 22-24
[7] LEE H H, KALHOR R, GOELA N, et al. Terminator-free template-independent enzymatic DNA synthesis for digital information storage[J]. Nature Communications, 2019, 10: 2383
[8] KNYPHAUSEN P, LINDENBURG L, HOLLFELDER F. Error-free synthetic DNA by molecular dictation[J]. Trends in Biotechnology, 2021, 39(9): 861-865
[9] CHEN Y, TAKAHASHI C N, ORGANICK L, et al. Quantifying molecular bias in DNA data storage[J]. Nature Communications, 2020, 11: 3264
[10] ANTKOWIAK P L, LIETARD J, DARESTANI M Z, et al. Low cost DNA data storage using photolithographic synthesis and advanced information reconstruction and error correction[J]. Nature Communications, 2020, 11: 5345
[11] XIONG A, YAO Q, PENG R, et al. PCR-based accurate synthesis of long DNA sequences[J]. Nature Protocols, 2006, 1: 791-797
[12] GAO X, LEPROUST E, ZHANG H, et al. A flexible light-directed DNA chip synthesis gated by deprotection using solution photogenerated acids[J]. Nucleic Acids Research, 2001, 29(22): 4744-4750
[13] ERLICH Y, ZIELINSKI D. DNA Fountain enables a robust and efficient storage architecture[J]. Science, 2017, 355(6328): 950-954
[14] ORGANICK L, ANG S D, CHEN Y J, et al. Random access in large-scale DNA data storage[J]. Nature Biotechnology, 2018, 36: 242-248
[15] GRASS R N, HECKEL R, PUDDU M, et al. Robust chemical preservation of digital information on DNA in silica with error-correcting codes[J]. Angewandte Chemie (International Ed in English), 2015, 54(8): 2552-2555
[16] 郜艳敏, 唐梦童, 刘倩, 等. DNA信息存储中关键生化方法的研究[J]. 合成生物学, 2021, 2(3): 384-398 GAO Yanmin, TANG Mengtong, LIU Qian, et al. The pivotal biochemical methods in DNA data storage[J]. Synthetic Biology Journal, 2021, 2(3): 384-398(in Chinese)
[17] ANCHORDOQUY T J, MOLINA M C. Preservation of dna[J]. Cell Preservation Technology, 2007, 5(4): 180-188
[18] GAO Y, CHEN X, QIAO H, et al. Low-bias manipulation of DNA oligo pool for robust data storage[J]. ACS Synthetic Biology, 2020, 9(12): 3344-3352
[19] KOSURI S, CHURCH G M. Large-scale de novo DNA synthesis: Technologies and applications[J]. Nature Methods, 2014, 11: 499-507
[20] CARUTHERS M H. The chemical synthesis of DNA/RNA: Our gift to science[J]. The Journal of Biological Chemistry, 2013, 288(2): 1420-1427
[21] CHURCH G M, GAO Y, KOSURI S. Next-generation digital information storage in DNA[J]. Science, 2012, 337(6102): 1628
[22] HOSSEIN T Y S M, GABRYS R, MILENKOVIC O. Portable and error-free DNA-based data storage[J]. Scientific Reports, 2017, 7: 5011
[23] LINDAHL T. Instability and decay of the primary structure of DNA[J]. Nature, 1993, 362(6422): 709-715
[24] Richa, SINHA R P, HÄDER D P. Physiological aspects of UV-excitation of DNA[J]. Topics in Current Chemistry, 2015, 356: 203-248
[25] LINDAHL T, NYBERG B. Rate of depurination of native deoxyribonucleic acid[J]. Biochemistry, 1972, 11(19): 3610-3618
[26] LINDAHL T, KARLSTRÖM O. Heat-induced depyrimidination of deoxyribonucleic acid in neutral solution[J]. Biochemistry, 1973, 12(25): 5151-5154
[27] SHAPIRO R, KLEIN R S. The deamination of cytidine and cytosine by acidic buffer solutions. Mutagenic implications[J]. Biochemistry, 1966, 5(7): 2358-2362
[28] SHAPIRO R, DANZIG M. Acidic hydrolysis of deoxycytidine and deoxyuridine derivatives. The general mechanism of deoxyribonucleoside hydrolysis[J]. Biochemistry, 1972, 11(1): 23-29
[29] MIDDAUGH C R, EVANS R K, MONTGOMERY D L, et al. Analysis of plasmid DNA from a pharmaceutical perspective[J]. Journal of Pharmaceutical Sciences, 1998, 87(2): 130-146
[30] FUCIARELLI A F, WEGHER B J, BLAKELY W F, et al. Yields of radiation-induced base products in DNA: Effects of DNA conformation and gassing conditions[J]. International Journal of Radiation Biology, 1990, 58(3): 397-415
[31] ZOLTEWICZ J A, CLARK D F, SHARPLESS T W, et al. Kinetics and mechanism of the acid-catalyzed hydrolysis of some purine nucleosides[J]. Journal of the American Chemical Society, 1970, 92(6): 1741-1749
[32] CHEN W, KOHLL A X, NGUYEN B H, et al. Combining data longevity with high storage capacity—Layer-by-layer DNA encapsulated in magnetic nanoparticles[J]. Advanced Functional Materials, 2019, 29(28): 1901672
[33] KOHLL A X, ANTKOWIAK P L, CHEN W, et al. Stabilizing synthetic DNA for long-term data storage with earth alkaline salts[J]. Chemical Communications, 2020, 56(25): 3613-3616
[34] WONG P C, WONG K K, FOOTE H. Organic data memory using the DNA approach[J]. Communications of the ACM, 2003, 46(1): 95-98
[35] YACHIE N, SEKIYAMA K, SUGAHARA J, et al. Alignment-based approach for durable data storage into living organisms[J]. Biotechnology Progress, 2007, 23(2): 501-505
[36] AILENBERG M, ROTSTEIN O. An improved Huffman coding method for archiving text, images, and music characters in DNA[J]. BioTechniques, 2009, 47(3): 747-754
[37] BANCROFT C, BOWLER T, BLOOM B, et al. Long-term storage of information in DNA[J]. Science, 2001, 293(5536): 1763-1765
[38] CHEN W, HAN M, ZHOU J, et al. An artificial chromosome for data storage[J]. National Science Review, 2021, 8(5): nwab028
[39] HAO M, QIAO H, GAO Y, et al. A mixed culture of bacterial cells enables an economic DNA storage on a large scale[J]. Communications Biology, 2020, 3: 416
[40] BORNHOLT J, LOPEZ R, CARMEAN D M, et al. A DNA-based archival storage system[C]//Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems. Atlanta, Georgia, USA: ACM, 2016: 637-649
[41] HOSSEIN TABATABAEI YAZDI S M, YUAN Y, MA J, et al. A rewritable, random-access DNA-based storage system[J]. Scientific Reports, 2015, 5: 14138
[42] CHOI K, NG A H C, FOBEL R, et al. Digital microfluidics[J]. Annual Review of Analytical Chemistry, 2012, 5: 413-440
[43] NEWMAN S, STEPHENSON A P, WILLSEY M, et al. High density DNA data storage library via dehydration with digital microfluidic retrieval[J]. Nature Communications, 2019, 10: 1706
[44] ANTKOWIAK P L, KOCH J, NGUYEN B H, et al. Integrating DNA encapsulates and digital microfluidics for automated data storage in DNA[J]. Small, 2022, 18(15): e2107381
[45] 杨军, 刘艳, 杜彦蕊. 关于二维码的研究和应用[J]. 应用科技, 2002, 29(11): 11-13 YANG Jun, LIU Yan, DU Yanrui. The study and application of the two-dimensional code[J]. Applied Science and Technology, 2002, 29(11): 11-13(in Chinese)
[46] CHOI Y, BAE H J, LEE A C, et al. DNA micro-disks for the management of DNA-based data storage with index and write-once-read-many (WORM) memory features[J]. Advanced Materials, 2020, 32(37): e2001249
[47] BANAL J L, SHEPHERD T R, BERLEANT J, et al. Random access DNA memory using Boolean search in an archival file storage system[J]. Nature Materials, 2021, 20: 1272-1280
[48] TOMEK K J, VOLKEL K, INDERMAUR E W, et al. Promiscuous molecules for smarter file operations in DNA-based data storage[J]. Nature Communications, 2021, 12: 3518
[49] SANGER F, NICKLEN S, COULSON A R. DNA sequencing with chain-terminating inhibitors[J]. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74(12): 5463-5467
[50] ESCALONA M, ROCHA S, POSADA D. A comparison of tools for the simulation of genomic next-generation sequencing data[J]. Nature Reviews Genetics, 2016, 17: 459-469
[51] ROTHBERG J M, HINZ W, REARICK T M, et al. An integrated semiconductor device enabling non-optical genome sequencing[J]. Nature, 2011, 475: 348-352
[52] TOMEK K J, VOLKEL K, SIMPSON A, et al. Driving the scalability of DNA-based information storage systems[J]. ACS Synthetic Biology, 2019, 8(6): 1241-1248
[53] KEBSCHULL J M, ZADOR A M. Sources of PCR-induced distortions in high-throughput sequencing data sets[J]. Nucleic Acids Research, 2015, 43(21): e143
[54] TAKAHASHI C N, NGUYEN B H, STRAUSS K, et al. Demonstration of end-to-end automation of DNA data storage[J]. Scientific Reports, 2019, 9: 4998
[55] XU C, MA B, GAO Z, et al. Electrochemical DNA synthesis and sequencing on a single electrode with scalability for integrated data storage[J]. Science Advances, 2021, 7(46): eabk0100
|