[1] PANTZALI M N, MOUZA A A, PARAS S V. Pollutant emissions management in an existing plant: The CHF3 case[J]. Chemical Engineering & Technology, 2005, 28(2): 187-192
[2] 韩文锋, 靳碧波, 周强, 等. 三氟甲烷(HFC-23)的资源化转化利用[J]. 化工进展, 2014, 33(2): 483-492 HAN Wenfeng, JIN Bibo, ZHOU Qiang, et al. Conversion and resource utilization of waste CHF3 gas[J]. Chemical Industry and Engineering Progress, 2014, 33(2): 483-492(in Chinese)
[3] MAZLOOMI Z, BANSODE A, BENAVENTE P, et al. Continuous process for production of CuCF3 via direct cupration of fluoroform[J]. Organic Process Research & Development, 2014, 18(8): 1020-1026
[4] 韩文锋, 习苗, 王志昆, 等. La对CHF3和I2气相合成CF3I催化剂性能的影响[J]. 高校化学工程学报, 2016, 30(6): 1372-1379 HAN Wenfeng, XI Miao, WANG Zhikun, et al. Promotional effects of La on Rb-K/AC catalysts in CF3I synthesis via CHF3 and I2 gas-phase reaction[J]. Journal of Chemical Engineering of Chinese Universities, 2016, 30(6): 1372-1379(in Chinese)
[5] 王刚. 三氟甲烷裂解制备四氟乙烯和六氟丙烯的研究[D]. 杭州: 浙江大学, 2015 WANG Gang. Study on pyrolysis of trifluoromethane to tetrafluoroethvlene and hexafluoropropylene[D].Hangzhou: Zhejiang University, 2015 (in Chinese)
[6] CHENG Y, WANG J, HAN W, et al. Catalytic coupling of CH4 with CHF3 for the synthesis of VDF over LaOF catalyst[J]. Greenhouse Gases: Science and Technology, 2018, 8(3): 587-602
[7] HAN W, WANG J, CHEN L, et al. Reverting fluoroform back to chlorodifluoromethane and dichlorofluoromethane: Intermolecular Cl/F exchange with chloroform at moderate temperatures[J]. Chemical Engineering Journal, 2019, 355: 594-601
[8] LIM J S, PARK K H, LEE B G, et al. Phase equilibria of CFC alternative refrigerant mixtures. binary systems of trifluoromethane (HFC-23) + 1, 1, 1, 2-tetrafluoroethane (HFC-134a) and trifluoromethane (HFC-23) + 1, 1, 1, 2, 3, 3, 3-heptafluoropropane (HFC-227ea) at 283.15 and 293.15 K[J]. Journal of Chemical & Engineering Data, 2001, 46(6): 1580-1583
[9] SHARIATI A, PETERS C J. High-pressure phase equilibria of systems with ionic liquids[J]. The Journal of Supercritical Fluids, 2005, 34(2): 171-176
[10] RUAN X, DAI Y, DU L, et al. Further separation of HFC-23 and HCFC-22 by coupling multi-stage PDMS membrane unit to cryogenic distillation[J]. Separation and Purification Technology, 2015, 156: 673-682
[11] SHIFLETT M B, CORBIN D R, ELLIOTT B A, et al. Sorption of trifluoromethane in zeolites and ionic liquid[J]. The Journal of Chemical Thermodynamics, 2013, 64: 40-49
[12] SHIFLETT M B, CORBIN D R, ELLIOTT B A, et al. Sorption of trifluoromethane in activated carbon[J]. Adsorption, 2014, 20(4): 565-575
[13] YAN H, FU Q, ZHOU Y, et al. CO2 capture from dry flue gas by pressure vacuum swing adsorption: A systematic simulation and optimization[J]. International Journal of Greenhouse Gas Control, 2016, 51: 1-10
[14] MALEK A, FAROOQ S. Hydrogen purification from refinery fuel gas by pressure swing adsorption[J]. AIChE Journal, 1998, 44(9): 1985-1992
[15] SUSARLA N, HAGHPANAH R, KARIMI I A, et al. Energy and cost estimates for capturing CO2 from a dry flue gas using pressure/vacuum swing adsorption[J]. Chemical Engineering Research and Design, 2015, 102: 354-367
[16] COLLETTE T W. Prediction of molecular properties with mid-infrared spectra and interferograms[J]. Applied Spectroscopy, 2001, 55(8): 1067-1078
[17] GUO Y, HU J, LIU X, et al. Scalable solvent-free preparation of [Ni3(HCOO)6] frameworks for highly efficient separation of CH4 from N2[J]. Chemical Engineering Journal, 2017, 327: 564-572
[18] CHEN K, SCOTT H, MADDEN D, et al. Benchmark C2H2/CO2 and CO2/C2H2 separation by two closely related hybrid ultramicroporous materials[J]. Chem, 2016, 1(5): 753-765
[19] FU Q, ZHOU Y, SHEN Y, et al. R23/R22 separation and recovery using the DIST-PSA hybrid system[J]. Industrial & Engineering Chemistry Research, 2017, 56(1): 331-341
[20] SUN W, SHEN Y, ZHANG D, et al. A systematic simulation and proposed optimization of the pressure swing adsorption process for N2/CH4 separation under external disturbances[J]. Industrial & Engineering Chemistry Research, 2015, 54(30): 7489-7501
[21] LOPES F V S, GRANDE C A, RIBEIRO A M, et al. Adsorption of H2, CO2, CH4, CO, N2 and H2O in activated carbon and zeolite for hydrogen production[J]. Separation Science and Technology, 2009, 44(5): 1045-1073
|