[1] 龚俊波,孙杰,王静康.面向智能制造的工业结晶研究进展[J].化工学报, 2018, 69(11):4505-4517 GONG Junbo, SUN Jie, WANG Jingkang. Research progress of industrial crystallization towards intelligent manufacturing[J]. CIESC Journal, 2018, 69(11):4505-4517(in Chinese)
[2] ERDEMIR D, LEE A Y, MYERSON A S. Nucleation of crystals from solution:Classical and two-step models[J]. Accounts of Chemical Research, 2009, 42(5):621-629
[3] Erdemir D, Lee A Y, Myerson A S. Nucleation of crystals from solution:classical and two-step models[J]. Accounts of chemical research, 2009, 42(5):621-629
[4] MELDRUM F C, O'SHAUGHNESSY C. Crystallization in confinement[J]. Advanced Materials (Deerfield Beach, Fla),b2020, doi:10.1002/adma.202001068
[5] 李津.微尺度液滴内复杂环流调控的结晶过程研究[D].辽宁大连:大连理工大学, 2020 LI Jin. Spatial confined microfluid flow involved model for micro droplet crystallization regulation[D]. Liaoning Dalian:Dalian University of Technology, 2020(in Chinese)
[6] JONES E C L, BIMBO L M. Crystallisation behaviour of pharmaceutical compounds confined within mesoporous silicon[J]. Pharmaceutics, 2020, doi:10.3390/pharmaceutics12030214
[7] SONNENBERGER N, ANDERS N, GOLITSYN Y, et al. Pharmaceutical nanocrystals confined in porous host systems:Interfacial effects and amorphous interphases[J]. Chemical Communications (Cambridge, England), 2016, 52(24):4466-4469
[8] LAI T, CORNEVIN J, FERGUSON S, et al. Control of polymorphism in continuous crystallization via mixed suspension mixed product removal systems cascade design[J]. Crystal Growth&Design, 2015, 15(7):3374-3382
[9] CARR J M, LANGHE D S, PONTING M T, et al. Confined crystallization in polymer nanolayered films:A review[J].Journal of Materials Research, 2012, 27(10):1326-1350
[10] YONEGUCHI Y, KIKUCHI H, NAKAGAWA S, et al. Combined effects of confinement size and chain-end tethering on the crystallization of poly (ε-caprolactone) chains in nanolamellae[J]. Polymer, 2019, 160:73-81
[11] JHA K C, TSIGE M. Molecular modeling of thermal and mechanical properties of elastomers:A review[J]. Rubber Chemistry and Technology, 2013, 86(3):401-422
[12] MVLLER K, BUGNICOURT E, LATORRE M, et al. Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields[J]. Nanomaterials (Basel, Switzerland),2017, doi:10.3390/nano7040074
[13] SEAR R P. Quantitative studies of crystal nucleation at constant supersaturation:Experimental data and models[J]. CrystEngComm, 2014, 16(29):6506-6522
[14] JIANG Q, WARD M D. Crystallization under nanoscale confinement[J]. Chemical Society Reviews, 2014, 43(7):2066-2079
[15] 林家伟,石鹏,龚俊波,等.表面诱导药物多晶型成核的研究进展[J].化工学报, 2021, 72(2):814-827 LIN Jiawei, SHI Peng, GONG Junbo, et al. Progress on surface-induced nucleation of drug for controlling polymorphism[J]. CIESC Journal, 2021, 72(2):814-827(in Chinese)
[16] 欧阳金波,陈建,应昕,等.小分子药物多晶型调控研究进展[J].现代化工, 2021, 41(1):62-66, 71 OUYANG Jinbo, CHEN Jian, YING Xin, et al. Research progress on polymorph control of small molecule drugs[J]. Modern Chemical Industry, 2021, 41(1):62-66, 71(in Chinese)
[17] MING Y, ZHOU Z, ZHANG S, et al. Molecular simulation of crystallization of polymers confined in cylindrical nanodomain[J].Polymer,2020, doi:10.1016/j.polymer.2020.122818
[18] MING Y, ZHOU Z, HAO T, et al. Molecular simulation of polymer crystallization under chain and space confinement[J]. Physical Chemistry Chemical Physics:PCCP, 2021, 23(32):17382-17391
[19] LAN X, WANG X, DU W, et al. Thermal properties and cold crystallization kinetics of deep eutectic solvents confined in nanopores[J]. Physical Chemistry Chemical Physics:PCCP, 2021, 23(25):13785-13788
[20] NOJIMA S, OHGUMA Y, KADENA K I, et al. Crystal orientation of poly (ε-caprolactone) homopolymers confined in cylindrical nanodomains[J]. Macromolecules, 2010, 43(8):3916-3923
[21] HAMILTON B D, WEISSBUCH I, LAHAV M, et al. Manipulating crystal orientation in nanoscale cylindrical pores by stereochemical inhibition[J]. Journal of the American Chemical Society, 2009, 131(7):2588-2596
[22] NAKAGAWA S, KADENA K I, ISHIZONE T, et al. Crystallization behavior and crystal orientation of poly (ε-caprolactone) homopolymers confined in nanocylinders:Effects of nanocylinder dimension[J]. Macromolecules, 2012, 45(4):1892-1900
[23] STEINHART M, GÖRING P, DERNAIKA H, et al. Coherent kinetic control over crystal orientation in macroscopic ensembles of polymer nanorods and nanotubes[J]. Physical Review Letters, 2006, doi:10.1103/PhysRevLett.97.027801
[24] BANPEAN A, SAKURAI S. Confined crystallization of Poly (ethylene glycol) in spherulites of poly (L-lactic acid) in a PLLA/PEG blend[J]. Polymer, 2021, doi:10.1016/j.polymer.2020.123370
[25] NOJIMA S, OHGUMA Y, NAMIKI S, et al. Crystallization of homopolymers confined in spherical or cylindrical nanodomains[J]. Macromolecules, 2008, 41(6):1915-1918
[26] ANDUIX-CANTO C, KIM Y Y, WANG Y, et al. Effect of nanoscale confinement on the crystallization of potassium ferrocyanide[J]. Crystal Growth&Design, 2016, 16(9):5403-5411
[27] ZHANG Z, LI J, JIANG Q. Modelling for size-dependent and dimension-dependent melting of nanocrystals[J]. Journal of Physics D:Applied Physics, 2000, 33(20):2653-2656
[28] HAMILTON B D, HILLMYER M A, WARD M D. Glycine polymorphism in nanoscale crystallization Chambers[J]. Crystal Growth&Design, 2008, 8(9):3368-3375
[29] CHRISTENSON H K. Confinement effects on freezing and melting[J]. Journal of Physics:Condensed Matter, 2001, 13(11):R95-R133
[30] WOO E, HUH J, JEONG Y G, et al. From homogeneous to heterogeneous nucleation of chain molecules under nanoscopic cylindrical confinement[J]. Physical Review Letters,2007,98(13), doi:10.1103/PhysRevLett.98.136103
[31] DWYER L M, MICHAELIS V K, O'MAHONY M, et al. Confined crystallization of fenofibrate in nanoporous silica[J]. CrystEngComm, 2015, 17(41):7922-7929
[32] WHITTAKER M L, DOVE P M, JOESTER D. Nucleation on surfaces and in confinement[J]. MRS Bulletin, 2016, 41(5):388-392
[33] HAMILTON B D, HA J, HILLMYER M A, et al. Manipulating crystal growth and polymorphism by confinement in nanoscale crystallization Chambers[J]. Accounts of Chemical Research, 2012, 45(3):414-423
[34] DELMAS T, SHAH U V, ROBERTS M M, et al. Crystallisation of the orthorhombic form of acetaminophen:Combined effect of surface topography and chemistry[J]. Powder Technology, 2013, 236:24-29
[35] JURAMY M, CHōVRE R, CERREIA VIOGLIO P, et al. Monitoring crystallization processes in confined porous materials by dynamic nuclear polarization solid-state nuclear magnetic resonance[J]. Journal of the American Chemical Society, 2021, 143(16):6095-6103
[36] DURAN H, STEINHART M, BUTT H J, et al. From heterogeneous to homogeneous nucleation of isotactic poly (propylene) confined to nanoporous alumina[J]. Nano Letters, 2011, 11(4):1671-1675
[37] MI C, ZHOU J, REN Z, et al. The phase transition behavior of poly (butylene adipate) in the nanoporous anodic alumina oxide[J]. Polymer Chemistry, 2016, 7(2):410-417
[38] MICHELL R M, BLASZCZYK-LEZAK I, MIJANGOS C, et al. Confined crystallization of polymers within anodic aluminum oxide templates[J]. Journal of Polymer Science Part B:Polymer Physics, 2014, 52(18):1179-1194
[39] VALLANT T, KATTNER J, BRUNNER H, et al. Investigation of the formation and structure of self-assembled alkylsiloxane monolayers on silicon using In situ attenuated total reflection infrared spectroscopy[J]. Langmuir, 1999, 15(16):5339-5346
[40] LLINÀS A, GOODMAN J M. Polymorph control:Past, present and future[J]. Drug Discovery Today, 2008, 13(5/6):198-210
[41] 王灵宇,杜世超,董伟兵.药物共晶多晶型的研究进展[J].化学工业与工程, 2018, 35(3):29-37 WANG Lingyu, DU Shichao, DONG Weibing. Research advances of polymorphism in pharmaceutical cocrystals[J]. Chemical Industry and Engineering, 2018, 35(3):29-37(in Chinese)
[42] RAMOV I, RVSSEL C, AVRAMOVA K. Conditions for metastable crystallization from undercooled melts[J]. Journal of Non-Crystalline Solids, 2004, 337(3):220-225
[43] CHEN C, COOK O, NICHOLSON C E, et al. Leapfrogging ostwald's rule of stages:Crystallization of stable γ-glycine directly from microemulsions[J]. Crystal Growth&Design, 2011, 11(6):2228-2237
[44] HA J M, WOLF J H, HILLMYER M A, et al. Polymorph selectivity under nanoscopic confinement[J]. Journal of the American Chemical Society, 2004, 126(11):3382-3383
[45] HA J, HAMILTON B D, HILLMYER M A, et al. Phase behavior and polymorphism of organic crystals confined within nanoscale Chambers[J]. Crystal Growth and Design, 2009, 9(11):4766-4777
[46] BANERJEE M, BRETTMANN B. Combining surface templating and confinement for controlling pharmaceutical crystallization[J]. Pharmaceutics, 2020, doi:10.3390/pharmaceutics12100995
[47] BEINER M, RENGARAJAN G T, PANKAJ S, et al. Manipulating the crystalline state of pharmaceuticals by nanoconfinement[J]. Nano Letters, 2007, 7(5):1381-1385
[48] CHENG S, MCKENNA G B. Nanoconfinement effects on the glass transition and crystallization behaviors of nifedipine[J]. Molecular Pharmaceutics, 2019, 16(2):856-866
[49] 赵绍磊,王灵宇,吴送姑.药物多晶型的研究进展[J].化学工业与工程, 2018, 35(3):12-21 ZHAO Shaolei, WANG Lingyu, WU Songgu. Progress in the research of pharmaceutical polymorph[J]. Chemical Industry and Engineering, 2018, 35(3):12-21(in Chinese)
[50] BANERJEE M, SARASWATULA S, WILLOWS L G, et al. Pharmaceutical crystallization in surface-modified nanocellulose organogels[J]. Journal of Materials Chemistry B, 2018, 6(44):7317-7328
[51] RENGARAJAN G T, ENKE D, STEINHART M, et al. Stabilization of the amorphous state of pharmaceuticals in nanopores[J]. Journal of Materials Chemistry, 2008, 18(22):2537-2539
[52] WU H, HIGAKI Y, TAKAHARA A. Molecular self-assembly of one-dimensional polymer nanostructures in nanopores of anodic alumina oxide templates[J]. Progress in Polymer Science, 2018, 77:95-117
[53] SHIN K, WOO E, JEONG Y G, et al. Crystalline structures, melting, and crystallization of linear polyethylene in cylindrical nanopores[J]. Macromolecules, 2007, 40(18):6617-6623
[54] LIU G, MVLLER A J, WANG D. Confined crystallization of polymers within nanopores[J]. Accounts of Chemical Research, 2021, 54(15):3028-3038
[55] SHI G, WANG Z, WANG M, et al. Crystallization, orientation, and solid-solid crystal transition of polybutene-1 confined within nanoporous alumina[J]. Macromolecules, 2020, 53(15):6510-6518
[56] KIM B S, JEONG Y G, SHIN K. Influence of surface property on the crystallization of hentetracontane under nanoscopic cylindrical confinement[J]. The Journal of Physical Chemistry B, 2013, 117(19):5978-5988
[57] 曹晓.簇基超分子嵌段共聚物的合成及自组装行为研究[D].长春:吉林大学,2016 Cao Xiao. Synthesis and self-assembly behavior of cluster-based supramolecular block copolymers[D].Changchun:Jilin University, 2016
[58] SAMANTA P, LIU C, NANDAN B, et al. Crystallization of polymers in confined space[M]//Crystallization in Multiphase Polymer Systems. Amsterdam:Elsevier, 2018
[59] YU C, XIE Q, BAO Y, et al. Crystalline and spherulitic morphology of polymers crystallized in confined systems[J].Crystals,2017, doi:10.3390/cryst7050147
[60] HE Q, YUAN Y, CHEN F, et al. Polymethylene-b-poly (acrylic acid) diblock copolymers:Morphology and crystallization evolution influenced by polyethyene polyamine with dual confinement effects[J]. Polymer, 2017, 108:322-331
[61] 蒋楠,党乐平.液滴-微流体环境下L-谷氨酸的多晶型现象[J].化学工业与工程, 2018, 35(3):68-73 JIANG Nan, DANG Leping. The polymorphy of L-glutamic acid under drop-microfluidic system[J]. Chemical Industry and Engineering, 2018, 35(3):68-73(in Chinese)
[62] OU X, LI X, RONG H, et al. A general method for cultivating single crystals from melt microdroplets[J]. Chemical Communications (Cambridge, England), 2020, 56(69):9950-9953
[63] MAEKI M, TESHIMA Y, YOSHIZUKA S, et al. Controlling protein crystal nucleation by droplet-based microfluidics[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2014, 20(4):1049-1056
[64] YU S, LAI Z, JINNAI H, et al. Adding symmetry:Cylindrically confined crystallization of nylon-6[J]. Macromolecules, 2019, 52(9):3298-3305
[65] PAGE A J, SEAR R P. Crystallization controlled by the geometry of a surface[J]. Journal of the American Chemical Society, 2009, 131(48):17550-17551
[66] PARAMBIL J V, POORNACHARY S K, HENG J Y Y, et al. Template-induced nucleation for controlling crystal polymorphism:From molecular mechanisms to applications in pharmaceutical processing[J]. CrystEngComm, 2019, 21(28):4122-4135
[67] DIAO Y, HARADA T, MYERSON A S, et al. The role of nanopore shape in surface-induced crystallization[J]. Nature Materials, 2011, 10(11):867-871
[68] VAN MEEL J A, SEAR R P, FRENKEL D. Design principles for broad-spectrum protein-crystal nucleants with nanoscale pits[J]. Physical Review Letters, 2010, doi:10.1103/PhysRevLett.105.205501
|