[1] Chen J, Sarma B, Evans J M B, et al. Pharmaceutical crystallization[J]. Crystal Growth & Design, 2011, 11(4):887-895
[2] Saleemi A, Rielly C, Nagy Z K. Automated direct nucleation control for in situ dynamic fines removal in batch cooling crystallization[J]. Cryst Eng Comm, 2012, 14(6):2196-2203
[3] Abu Bakar M R, Nagy Z K, Saleemi A N, et al. The impact of direct nucleation control on crystal size distribution in pharmaceutical crystallization processes[J]. Crystal Growth & Design, 2009, 9(3):1378-1384
[4] Kougoulos E, Smales I, Verrier H M. Towards integrated drug substance and drug product design for an active pharmaceutical ingredient using particle engineering[J]. AAPS Pharm Sci Tech, 2011, 12(1):287-294
[5] Yang Y, Pal K, Koswara A, et al. Application of feedback control and in situ milling to improve particle size and shape in the crystallization of a slow growing needle-like active pharmaceutical ingredient[J]. International Journal of Pharmaceutics, 2017, 533(1):49-61
[6] Erdemir D, Lee A Y, Myerson A S. Nucleation of crystals from solution:Classical and two-step models[J]. Accounts of Chemical Research, 2009, 42(5):621-629
[7] Li W, Wei Y, Tu G, et al. Experimental study about mixing characteristic and enhancement of T-jet reactor[J]. Chemical Engineering Science, 2016, 144:116-125
[8] Jiang M, Li Y, Tung H H, et al. Effect of jet velocity on crystal size distribution from antisolvent and cooling crystallizations in a dual impinging jet mixer[J]. Chemical Engineering and Processing:Process Intensification, 2015, 97:242-247
[9] Wu B, Li J, Li C, et al. Antisolvent crystallization intensified by a jet crystallizer and a method for investigating crystallization kinetics[J]. Chemical Engineering Science, 2020, doi:10.1016/j.ces.2019.115259
[10] Oliva J A, Wu W, Greene M R, et al. Continuous spherical crystallization of lysozyme in an oscillatory baffled crystallizer using emulsion solvent diffusion in droplets[J]. Crystal Growth & Design, 2020, 20(2):934-947
[11] McGlone T, Briggs N E B, Clark C A, et al. Oscillatory flow reactors (OFRs) for continuous manufacturing and crystallization[J]. Organic Process Research & Development, 2015, 19(9):1186-1202
[12] Liu Y, Dunn D, Lipari M, et al. A comparative study of continuous operation between a dynamic baffle crystallizer and a stirred tank crystallizer[J]. Chemical Engineering Journal, 2019, 367:278-294
[13] Wu Z, Seok S, Kim D H, et al. Control of crystal size distribution using non-isothermal Taylor vortex flow[J]. Crystal Growth & Design, 2015, 15(12):5675-5684
[14] Wu Z, Kim D H, Kim W S. Batch cooling crystallization in non-isothermal Taylor vortex flow:Effective method for controlling crystal size distribution[J]. Crystal Growth & Design, 2017, 17(1):28-36
[15] Nguyen A T, Yu T, Kim W S. Couette-Taylor crystallizer:Effective control of crystal size distribution and recovery of L-lysine in cooling crystallization[J]. Journal of Crystal Growth, 2017, 469:65-77
[16] Sesen M, Alan T, Neild A. Droplet control technologies for microfluidic high throughput screening (μHTS)[J]. Lab on a Chip, 2017, 17(14):2372-2394
[17] Teychen S, Biscans B. Crystal nucleation in a droplet based microfluidic crystallizer[J]. Chemical Engineering Science, 2012, 77:242-248
[18] Jiang X, Han M, Xia Z, et al. Interfacial microdroplet evaporative crystallization on 3D printed regular matrix platform[J]. AIChE Journal, 2020, doi:10.1002/aic.16280
[19] Lakerveld R, van Krochten J J H, Kramer H J M. An air-lift crystallizer can suppress secondary nucleation at a higher supersaturation compared to a stirred crystallizer[J]. Crystal Growth & Design, 2014, 14(7):3264-3275
[20] Mathew Thomas K, Lakerveld R. An airlift crystallizer for protein crystallization[J]. Industrial & Engineering Chemistry Research, 2019, 58(44):20381-20391
[21] Kaur Bhangu S, Ashokkumar M, Lee J. Ultrasound assisted crystallization of paracetamol:Crystal size distribution and polymorph control[J]. Crystal Growth & Design, 2016, 16(4):1934-1941
[22] Ramisetty K, Rasmuson Å C. Controlling the product crystal size distribution by strategic application of ultrasonication[J]. Crystal Growth & Design, 2018, 18(3):1697-1709
[23] 初广文, 邹海魁, 曾晓飞, 等. 超重力反应强化技术及工业应用[J]. 北京化工大学学报:自然科学版, 2018, 45(5):33-39 Chu Guangwen, Zou Haikui, Zeng Xiaofei, et al. High-gravity reaction process intensification and its industrial applications[J]. Journal of Beijing University of Chemical Technology:Natural Science Edition, 2018, 45(5):33-39(in Chinese)
[24] Wu K, Wu H, Dai T, et al. Controlling nucleation and fabricating nanoparticulate formulation of sorafenib using a high-gravity rotating packed bed[J]. Industrial & Engineering Chemistry Research, 2018, 57(6):1903-1911
[25] Wu K, Xie M, Chen J, et al. A novel routine for the fabrication of Y-type oxotitanium phthalocyanine nanocrystals in high-gravity rotating packed beds[J]. Industrial & Engineering Chemistry Research, 2016, 55(24):6753-6759
[26] Chen J, Shao L. Mass production of nanoparticles by high gravity reactive precipitation technology with low cost[J]. China Particuology, 2003, 1(2):64-69
[27] 罗志强, 杨庆峰. 旋转磁场与水量耦合对CaCO3结晶的影响[J]. 化工学报, 2018, 69(7):3029-3037 Luo Zhiqiang, Yang Qingfeng. Effect of rotating magnetic field coupled with water volume on CaCO3 crystallization[J]. CIESC Journal, 2018, 69(7):3029-3037(in Chinese)
[28] Tai C, Wu C, Chang M. Effects of magnetic field on the crystallization of CaCO3 using permanent magnets[J]. Chemical Engineering Science, 2008, 63(23):5606-5612
[29] Kacker R, Salvador P M, Sturm G S J, et al. Microwave assisted direct nucleation control for batch crystallization:Crystal size control with reduced batch time[J]. Crystal Growth & Design, 2016, 16(1):440-446
[30] Tuo L, Ruan X, Xiao W, et al. A novel hollow fiber membrane-assisted antisolvent crystallization for enhanced mass transfer process control[J]. AIChE Journal, 2019, 65(2):734-744
[31] Li J, Sheng L, Tuo L, et al. Membrane-assisted antisolvent crystallization:Interfacial mass-transfer simulation and multistage process control[J]. Industrial & Engineering Chemistry Research, 2020, 59(21):10160-10171
[32] Yang Y, Song L, Gao T, et al. Integrated upstream and downstream application of wet milling with continuous mixed suspension mixed product removal crystallization[J]. Crystal Growth & Design, 2015, 15(12):5879-5885
[33] Wang T, Lu H, Wang J, et al. Recent progress of continuous crystallization[J]. Journal of Industrial and Engineering Chemistry, 2017, 54:14-29
[34] Liu W, Ma C, Liu J, et al. Continuous reactive crystallization of pharmaceuticals using impinging jet mixers[J]. AIChE Journal, 2017, 63(3):967-974
[35] Beck C, Dalvi S V, Dave R N. Controlled liquid antisolvent precipitation using a rapid mixing device[J]. Chemical Engineering Science, 2010, 65(21):5669-5675
[36] Kwokal A. Crystallisation control by process analytical technology//Engineering Crystallography:From molecule to crystal to functional form. Dordrecht:Springer Netherlands, 2017, doi:10.1007/978-94-024-1117-1-15
[37] Mullin J W, Nývlt J. Programmed cooling of batch crystallizers[J]. Chemical Engineering Science, 1971, 26(3):369-377
[38] Nagy Z K, Fevotte G, Kramer H, et al. Recent advances in the monitoring, modelling and control of crystallization systems[J]. Chemical Engineering Research and Design, 2013, 91(10):1903-1922
[39] Qamar S, Warnecke G. Numerical solution of population balance equations for nucleation, growth and aggregation processes[J]. Computers & Chemical Engineering, 2007, 31(12):1576-1589
[40] Gunawan R, Fusman I, Braatz R D. High resolution algorithms for multidimensional population balance equations[J]. AIChE Journal, 2004, 50(11):2738-2749
[41] Kariwala V, Cao Y, Nagy Z K. Automatic differentiation-based quadrature method of moments for solving population balance equations[J]. AIChE Journal, 2012, 58(3):842-854
[42] Nagy Z K, Fujiwara M, Braatz R D. Modelling and control of combined cooling and antisolvent crystallization processes[J]. Journal of Process Control, 2008, 18(9):856-864
[43] Nagy Z K. Crystallization control approaches and models[C]//Engineering Crystallography:From molecule to crystal to functional form. Dordrecht:Springer Netherlands, 2017, doi:10.1007/978-94-024-1117-1-17
[44] Kittisupakorn P, Somsong P, Hussain M A, et al. Improving of crystal size distribution control based on neural network-based hybrid model for purified terephthalic acid batch crystallizer[J]. Engineering Journal, 2017, 21(7):319-331
[45] Szilágyi B, Nagy Z K. Population balance modeling and optimization of an integrated batch crystallizer-wet mill system for crystal size distribution control[J]. Crystal Growth & Design, 2018, 18(3):1415-1424
[46] Mesbah A, Landlust J, Huesman A E M, et al. A model-based control framework for industrial batch crystallization processes[J]. Chemical Engineering Research and Design, 2010, 88(9):1223-1233
[47] Trifkovic M, Sheikhzadeh M, Rohani S. Kinetics estimation and single and multi-objective optimization of a seeded, anti-solvent, isothermal batch crystallizer[J]. Industrial & Engineering Chemistry Research, 2008, 47(5):1586-1595
[48] Woo X Y, Tan R, Chow P S, et al. Simulation of mixing effects in antisolvent crystallization using a coupled CFD-PDF-PBE approach[J]. Crystal Growth & Design, 2006, 6(6):1291-1303
[49] Nagy Z K, Braatz R D. Advances and new directions in crystallization control[J]. Annual Review of Chemical and Biomolecular Engineering, 2012, 3(1):55-75
[50] Aamir E, Nagy Z K, Rielly C D. Evaluation of the effect of seed preparation method on the product crystal size distribution for batch cooling crystallization processes[J]. Crystal Growth & Design, 2010, 10(11):4728-4740
[51] 赵绍磊, 王耀国, 张腾, 等. 制药结晶中的先进过程控制[J]. 化工学报, 2020, 71(2):459-474 Zhao Shaolei, Wang Yaoguo, Zhang Teng, et al. Advanced process control of pharmaceutical crystallization[J]. CIESC Journal, 2020, 71(2):459-474(in Chinese)
[52] Sanzida N, Nagy Z K. Strategic evaluation of different direct nucleation control approaches for controlling batch cooling crystallisation via simulation and experimental case studies[J]. Computers & Chemical Engineering, 2019, doi:10.1016/j.compchemeng.2019.106559
[53] Simone E, Zhang W, Nagy Z K. Application of process analytical technology-based feedback control strategies to improve purity and size distribution in biopharmaceutical crystallization[J]. Crystal Growth & Design, 2015, 15(6):2908-2919
[54] Kee N C S, Tan R, Braatz R D. Selective crystallization of the metastable α-form of l-glutamic acid using concentration feedback control[J]. Crystal Growth & Design, 2009, 9(7):3044-3051
[55] Nagy Z K, Chew J W, Fujiwara M, et al. Comparative performance of concentration and temperature controlled batch crystallizations[J]. Journal of Process Control, 2008, 18(3/4):399-407
[56] Ostergaard I, Szilagyi B, de Diego H L, et al. Polymorphic control and scale-up strategy for antisolvent crystallization using direct nucleation control[J]. Crystal Growth & Design, 2020, 20(4):2683-2697
[57] Saleemi A N, Rielly C D, Nagy Z K. Comparative investigation of supersaturation and automated direct nucleation control of crystal size distributions using ATR-UV/vis spectroscopy and FBRM[J]. Crystal Growth & Design, 2012, 12(4):1792-1807
[58] Saleemi A N, Steele G, Pedge N I, et al. Enhancing crystalline properties of a cardiovascular active pharmaceutical ingredient using a process analytical technology based crystallization feedback control strategy[J]. International Journal of Pharmaceutics, 2012, 430(1/2):56-64
[59] Ostergaard I, Szilagyi B, de Diego H L, et al. Polymorphic control and scale-up strategy for antisolvent crystallization using direct nucleation control[J]. Crystal Growth & Design, 2020, 20(4):2683-2697
[60] Aamir E, Nagy Z K, Rielly C D, et al. Combined quadrature method of moments and method of characteristics approach for efficient solution of population balance models for dynamic modeling and crystal size distribution control of crystallization processes[J]. Industrial & Engineering Chemistry Research, 2009, 48(18):8575-8584
[61] Aamir E, Rielly C D, Nagy Z K. Experimental evaluation of the targeted direct design of temperature trajectories for growth-dominated crystallization processes using an analytical crystal size distribution estimator[J]. Industrial & Engineering Chemistry Research, 2012, 51(51):16677-16687
[62] Nagy Z K, Aamir E. Systematic design of supersaturation controlled crystallization processes for shaping the crystal size distribution using an analytical estimator[J]. Chemical Engineering Science, 2012, 84:656-670
[63] Hubert C, Lebrun P, Houari S, et al. Improvement of a stability-indicating method by Quality-by-Design versus Quality-by-Testing:A case of a learning process[J]. Journal of Pharmaceutical and Biomedical Analysis, 2014, 88:401-409
[64] Yu L, Amidon G, Khan M A, et al. Understanding pharmaceutical quality by design[J]. Aaps Journal, 2014, 16(4):771-783
[65] Lee S L, O'Connor T F, Yang X, et al. Modernizing pharmaceutical manufacturing:From batch to continuous production[J]. Journal of Pharmaceutical Innovation, 2015, 10(3):191-199
[66] Szilagyi B, Eren A, Quon J L, et al. Application of model-free and model-based quality-by-control (QbC) for the efficient design of pharmaceutical crystallization processes[J]. Crystal Growth & Design, 2020, 20(6):3979-3996
[67] Su Q, Ganesh S, Moreno M, et al. A perspective on Quality-by-Control (QbC) in pharmaceutical continuous manufacturing[J]. Computers & Chemical Engineering, 2019, 125:216-231
[68] Szilágyi B, Borsos Á, Pal K, et al. Experimental implementation of a Quality-by-Control (QbC) framework using a mechanistic PBM-based nonlinear model predictive control involving chord length distribution measurement for the batch cooling crystallization of L-ascorbic acid[J]. Chemical Engineering Science, 2019, 195:335-346
[69] Darby M L, Nikolaou M. MPC:Current practice and challenges[J]. Control Engineering Practice, 2012, 20(4):328-342
[70] Singh R, Sen M, Ierapetritou M, et al. Integrated moving horizon-based dynamic real-time optimization and hybrid MPC-PID control of a direct compaction continuous tablet manufacturing process[J]. Journal of Pharmaceutical Innovation, 2015, 10(3):233-253
[71] Su Q, Moreno M, Giridhar A, et al. A systematic framework for process control design and risk analysis in continuous pharmaceutical solid-dosage manufacturing[J]. Journal of Pharmaceutical Innovation, 2017, 12(4):327-346
|