[1] ANIPSITAKIS G P, DIONYSIOU D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt[J]. Environmental Science & Technology, 2003, 37(20): 4790-4797
[2] ANIPSITAKIS G P, DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38(13): 3705-3712
[3] ANIPSITAKIS G P, DIONYSIOU D D, GONZALEZ M A. Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. implications of chloride ions[J]. Environmental Science & Technology, 2006, 40(3): 1000-1007
[4] FURMAN O S, TEEL A L, WATTS R J. Mechanism of base activation of persulfate[J]. Environmental Science and Technology, 2010, 44(16): 6423-6428
[5] AHMAD M, TEEL A L, WATTS R J. Mechanism of persulfate activation by phenols[J]. Environmental Science & Technology, 2013, 47(11): 5864-5871
[6] DEWIL R, MANTZAVINOS D, POULIOS I, et al. New perspectives for Advanced Oxidation Processes[J]. Journal of Environmental Management, 2017, 195(2): 93-99
[7] HU P, LONG M. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications[J]. Applied Catalysis B: Environmental, 2016, 181: 103-117
[8] HUANG Y, HAN C, LIU Y, et al. Degradation of atrazine by ZnxCu1-xFe2O4 nanomaterial-catalyzed sulfite under UV-vis light irradiation: Green strategy to generate SO-4[J]. Applied Catalysis B: Environmental, 2018, 221: 380-392
[9] CHEN X, MIAO W, YANG Y, et al. Aeration-assisted sulfite activation with ferrous for enhanced chloramphenicol degradation[J]. Chemosphere, 2020, 238: 124599
[10] JIA L, PEI X, YANG F. Electrolysis-assisted Mn(II)/sulfite process for organic contaminant degradation at near-neutral pH[J]. Water, 2019, 11(8): 1608
[11] ZHOU D, CHEN L, LI J, et al. Transition metal catalyzed sulfite auto-oxidation systems for oxidative decontamination in waters: A state-of-the-art minireview[J]. Chemical Engineering Journal, 2018, 346: 726-738
[12] RAO D, SUN Y, SHAO B, et al. Activation of oxygen with sulfite for enhanced Removal of Mn(II): The involvement of SO·4[J]. Water Research, 2019, 157: 435-444
[13] 唐志华. 微量元素砷与人体健康[J]. 广东微量元素科学, 2003, 10(3): 10-13 TANG Zhihua. Trace element arsenic and health[J]. Trace Elements Science, 2003, 10(3): 10-13(in Chinese)
[14] SMEDLEY P L, KINNIBURGH D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17(5): 517-568
[15] 赵凯, 郭华明, 高存荣. 北方典型内陆盆地高砷地下水的水化学特征及处理技术[J]. 现代地质, 2015, 29(2): 351-360 ZHAO Kai, GUO Huaming, GAO Cunrong. Chemical characteristics and remediation of high arsenic groundwater in typical inland basins of North China[J]. Geoscience, 2015, 29(2): 351-360(in Chinese)
[16] WANG Z, BUSH R T, SULLIVAN L A, et al. Selective oxidation of arsenite by peroxymonosulfate with high utilization efficiency of oxidant[J]. Environmental Science & Technology, 2014, 48(7): 3978-3985
[17] WANG Z, BUSH R T, SULLIVAN L A, et al. Simultaneous redox conversion of chromium(VI) and arsenic(III) under acidic conditions[J]. Environmental Science & Technology, 2013, 47(12): 6486-6492
[18] WANG Z, BUSH R T, LIU J. Arsenic(III) and iron(II) co-oxidation by oxygen and hydrogen peroxide: Divergent reactions in the presence of organic ligands[J]. Chemosphere, 2013, 93(9): 1936-1941
[19] ZHOU L, ZHENG W, JI Y, et al. Ferrous-activated persulfate oxidation of arsenic(III) and diuron in aquatic system[J]. Journal of Hazardous Materials, 2013, 263 Pt 2: 422-430
[20] YOON S H, LEE J H. Oxidation mechanism of As(III) in the UV/TiO2 system: Evidence for a direct hole oxidation mechanism[J]. Environmental Science & Technology, 2005, 39(24): 9695-9701
[21] 吉冰冰, 肖玫, 张琳, 等. 铁-亚硫酸盐配合物体系氧化处理硫酸厂的含砷废水[J]. 水处理技术, 2014, 40(9): 52-56 JI Bingbing, XIAO Mei, ZHANG Lin, et al. Oxidation and removal of arsenic-containing wastewater from sulfuric acid factory by iron-sulfite complex system[J]. Technology of Water Treatment, 2014, 40(9): 52-56(in Chinese)
[22] XU J, DING W, WU F, et al. Rapid catalytic oxidation of arsenite to arsenate in an iron(III)/sulfite system under visible light[J]. Applied Catalysis B: Environmental, 2016, 186: 56-61
[23] 季朝阳. 含砷铁(羟基)氧化物光致溶解与转化中砷迁移的研究[D]. 天津: 天津大学, 2018 JI Zhaoyang. Mobilization of arsenic during light-induced dissolution and transformation of arsenic contained iron (hydr) oxides[D]. Tianjin: Tianjin University, 2018 (in Chinese)
[24] 顾雪元, 艾弗逊, 张云燕. Visual MINTEQ软件在环境化学教学中的应用[J]. 实验室研究与探索, 2018, 37(11): 165-167, 176 GU Xueyuan, AI Fusun, ZHANG Yunyan. Application of visual MINTEQ in the teaching of environmental chemistry[J]. Research and Exploration in Laboratory, 2018, 37(11): 165-167, 176(in Chinese)
[25] XIE P, GUO Y, CHEN Y, et al. Application of a novel advanced oxidation process using sulfite and zero-valent iron in treatment of organic pollutants[J]. Chemical Engineering Journal, 2017, 314: 240-248
[26] ZHANG L, CHEN L, XIAO M, et al. Enhanced decolorization of orange II solutions by the Fe(II)-sulfite system under xenon lamp irradiation[J]. Industrial & Engineering Chemistry Research, 2013, 52(30): 10089-10094
[27] BRANDT C, VAN ELDIK R. Transition metal-catalyzed oxidation of sulfur(IV) oxides. atmospheric-relevant processes and mechanisms[J]. Chemical Reviews, 1995, 95(1): 119-190
[28] KOZLOV Y N, TIKHONOV K G, ZASTRIZHNAYA O M, et al. pH dependence of the composition and stability of Mn(III)-bicarbonate complexes and its implication for redox interaction of MnII with photosystemII[J]. Journal of Photochemistry and Photobiology B: Biology, 2010, 101(3): 362-366
[29] 熊龙. Fe(Ⅱ)/亚硫酸盐氧化体系的构建及其转化As(Ⅲ)机理研究[D]. 山东东营: 中国石油大学(华东), 2016 XIONG Long. Construction of Fe(II)/sulfite oxidation system and investigation of the transformation mechanisms of As(III)[D].Shandong Dongying: China University of Petroleum (Huadong), 2016 (in Chinese)
[30] MORGAN J J. Kinetics of reaction between O2 and Mn(II) species in aqueous solutions[J]. Geochimica et Cosmochimica Acta, 2005, 69(1): 35-48
[31] DASGUPTA J, TYRYSHKIN A M, KOZLOV Y N, et al. Carbonate complexation of Mn2+ in the aqueous phase: Redox behavior and ligand binding modes by electrochemistry and EPR spectroscopy[J]. The Journal of Physical Chemistry B, 2006, 110(10): 5099-5111
[32] WANG J, WANG S. Activation of persulfate (PS) and peroxymonosulfate(PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517
[33] HUIE R E, CLIFTON C L. Temperature dependence of the rate constants for reactions of the sulfate radical, SO-4, with anions[J]. The Journal of Physical Chemistry, 1990, 94(23): 8561-8567
[34] SHEVELA D, EATON-RYE J J, SHEN J R, et al. Photosystem II and the unique role of bicarbonate: A historical perspective[J]. Biochimica et Biophysica Acta, 2012, 1817(8): 1134-1151
[35] NICO P S, ZASOSKI R J. Mn(III) center availability as a rate controlling factor in the oxidation of phenol and sulfide on δ-MnO2[J]. Environmental Science & Technology, 2001, 35(16): 3338-3343
[36] LIMBURG J, BRUDVIG G W, CRABTREE R H. O2 evolution and permanganate formation from high-valent manganese complexes[J]. Journal of the American Chemical Society, 1997, 119(11): 2761-2762
[37] LIMBURG J, VRETTOS J S, LIABLE-SANDS L M, et al. A functional model for O—O bond formation by the O2-evolving complex in photosystem II[J]. Science, 1999, 283(5407): 1524-1527
[38] SUN B, GUAN X, FANG J, et al. Activation of manganese oxidants with bisulfite for enhanced oxidation of organic contaminants: The involvement of Mn(III)[J]. Environmental Science & Technology, 2015, 49(20): 12414-12421
[39] MIZRAHI A, ZILBERMANN I, MAIMON E, et al. Different oxidation mechanisms of MnII(polyphosphate)n by the radicals NO·-2 and CO·-3[J]. Journal of Coordination Chemistry, 2016, 69(11/12/13): 1709-1721
[40] TIKHONOV K G, ZASTRIZHNAYA O M, KOZLOV Y N, et al. Composition and catalase-like activity of Mn(II)-bicarbonate complexes[J]. Biochemistry Biokhimiia, 2006, 71(11): 1270-1277
[41] DISMUKES G C, KLIMOV V V, BARANOV S V, et al. The origin of atmospheric oxygen on Earth: The innovation of oxygenic photosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(5): 2170-2175
[42] BUXTON G V, WOOD N D, DYSTER S. Ionisation constants of OH· and HO·2 in aqueous solution up to 200 ℃. A pulse radiolysis study[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1988, 84(4): 1113
[43] NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(3): 1027-1284
|