[1] FINK H P, WEIGEL P, PURZ H J, et al. Structure formation of regenerated cellulose materials from NMMO-solutions[J]. Progress in Polymer Science, 2001, 26(9):1473-1524 [2] JADHAV S, LIDHURE A, THAKRE S, et al. Modified Lyocell process to improve dissolution of cellulosic pulp and pulp blends in NMMO solvent[J]. Cellulose, 2021, 28(2):973-990 [3] PROTZ R, LEHMANN A, GANSTER J, et al. Solubility and spinnability of cellulose-lignin blends in aqueous NMMO[J]. Carbohydrate Polymers, 2021, doi:10.1016/j.carbpol.2020.117027 [4] 吴翠玲, 李新平, 秦胜利, 等. 新型有机纤维素溶剂:NMMO的研究[J]. 兰州理工大学学报, 2005, 31(2):73-76 WU Cuiling, LI Xinping, QIN Shengli, et al. Study of new organic cellulose solvent:N-methyl morpholine-N-oxide (NMMO)[J]. Journal of Lanzhou University of Technology, 2005, 31(2):73-76(in Chinese) [5] 周方越, 马云. 天津爆炸事故的分析、处理及启示[J]. 经贸实践, 2016(1):329-329 ZHOU Fangyue, MA Yun. Analysis, treatment and enlightenment of Tianjin explosion accident[J]. Economic & Trade, 2016(1):329-329(in Chinese) [6] CYMERMAN CRAIG J, PURUSHOTHAMAN K K. An improved preparation of tertiary amine N-oxides[J]. The Journal of Organic Chemistry, 1970, 35(5):1721-1722 [7] CORREA P E, HARDY G, RILEY D P. Selective autoxidation of electron-rich substrates under elevated oxygen pressures[J]. The Journal of Organic Chemistry, 1988, 53(8):1695-1702 [8] 孟宇伯, 高殿明, 赵倩. N-甲基氧化吗啉的合成研究[J]. 精细化工, 1996, 13(3):15-17 MENG Yubo, GAO Dianming, ZHAO Qian. The synthesis study of N-methyl morpholine oxide[J]. Fine Chemicals, 1996, 13(3):15-17(in Chinese) [9] 徐军辉, 刘羿君, 封云芳, 等. 氧化甲基吗啉的合成研究[J]. 浙江理工大学学报, 2008, 25(4):402-405 XU Junhui, LIU Yinjun, FENG Yunfang, et al. The synthesis study of N-methylmorpholine-N-oxide[J]. Journal of Zhejiang Sci-Tech University, 2008, 25(4):402-405(in Chinese) [10] ETO I, AKIYOSHI M, MATSUNAGA T, et al. Influenceof heavy metal ion on the thermal explosion of hydrogen peroxide[J].Journal of Thermal Analysis and Calorimetry, 2006, 85(3):623-627 [11] KUMASAKI M. An explosion of a tank car carrying waste hydrogen peroxide[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(4):307-311 [12] ZHANG J, MA Y, CHEN L, et al. Experimental and numerical simulation to identify the thermal hazards and hazardous scenarios of N-nitrodihydroxyethyl dinitrate[J]. Process Safety and Environmental Protection, 2021, 145:211-221 [13] ZHANG Z, LIU S, ZHANG B, et al. Runaway reaction and thermal hazards simulation of 4-amino-1, 2, 4-triazole picrate by HP-DSC and ARC[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(2):1367-1377 [14] 陈莹莹, 陈利平, 陈网桦, 等. 硝基胍溶液的热分解性能及动力学[J]. 含能材料, 2017, 25(3):257-261 CHEN Yingying, CHEN Liping, CHEN Wanghua, et al. Thermal decomposition characteristic and kinetics of nitroguanidine solution[J]. Chinese Journal of Energetic Materials, 2017, 25(3):257-261(in Chinese) [15] LI B, LUO Y, WANG H, et al. Thermal kinetic performance and thermal safety of 3, 3'-bis-oxadiazole-5, 5'-bis-methylene dinitrate[J]. Propellants, Explosives, Pyrotechnics, 2020, 45(12):1870-1876 [16] CONG Y, WEI Z, MA X, et al. Determination of SADT and TMRad of 3-bromo-1-(3, 5-dichloropyridin-2-yl)-4, 5-dihydro-1H-pyrazole-5-carboxylic acid:Applying thermal decomposition kinetics[J]. Results in Chemistry, 2021, doi:10.1016/j.rechem.2021.100112 [17] 王建娜, 韩蒙蒙, 宁艳霞, 等. O-3-氯-2-丙烯基羟胺热危险性及其淬灭研究[J]. 化学工业与工程, 2022, 39(1):27-32 WANG Jianna, HAN Mengmeng, NING Yanxia, et al. Study on thermal hazard and quenching of O-(3-chloro-2-propenyl)-hydroxylamine[J]. Chemical Industry and Engineering, 2022, 39(1):27-32(in Chinese) [18] ABRISHAMI F, CHIZARI M, ZOHARI N, et al. Study on thermal stability and decomposition kinetics of bis (2, 2-dinitropropyl) fumarate (BDNPF) as a melt cast explosive by model-free methods[J]. Propellants, Explosives, Pyrotechnics, 2019, 44(11):1446-1449 [19] BÖHMDORFER S, HOSOYA T, RÖDER T, et al. A cautionary note on thermal runaway reactions in mixtures of 1-alkyl-3-methylimidazolium ionic liquids and N-methylmorpholine-N-oxide[J]. Cellulose, 2017, 24(5):1927-1932 [20] VYAZOVKIN S, BURNHAM A K, CRIADO J M, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1/2):1-19 [21] CAO C, LIU S. Thermal hazard characteristic evaluation of two low-temperature-reactive azo compounds under adiabatic process conditions[J]. Process Safety and Environmental Protection, 2019, 130:231-237 [22] SUN D, MIAO X, XIE C, et al. Study on thermal properties and kinetics of benzoyl peroxide by ARC and C80 methods[J]. Journal of Thermal Analysis and Calorimetry, 2012, 107(3):943-948 [23] 何志伟, 颜事龙, 刘祖亮, 等. 加速量热仪研究2, 4, 6-三氨基-3, 5-二硝基吡啶-1-氧化物的热分解[J]. 含能材料, 2015, 23(5):415-419 HE Zhiwei, YAN Shilong, LIU Zuliang, et al. Adiabatic decomposition properties of 2, 4, 6-triamino-3, 5-dinitropyridine-1-oxide by accelerating rate calorimeter[J]. Chinese Journal of Energetic Materials, 2015, 23(5):415-419(in Chinese) [24] TOWNSEND D I, TOU J. Thermal hazard evaluation by an accelerating rate calorimeter[J]. Thermochimica Acta, 1980, 37(1):1-30 [25] PASTRÉ J, WÖRSDÖRFER U, KELLER A, et al. Comparison of different methods for estimating TMRad from dynamic DSC measurements with ADT 24 values obtained from adiabatic Dewar experiments[J]. Journal of Loss Prevention in the Process Industries, 2000, 13(1):7-17 [26] MUSUC A M, BIRZAN L, CRISTEA M, et al. A DSC study of new compounds based on (E)-3-(azulen-1-yldiazenyl)-1, 2, 5-oxadiazole[J].Journal of Thermal Analysis and Calorimetry, 2021, 146(4):1763-1772 [27] OZAWA T. Estimation of activation energy by isoconversion methods[J]. Thermochimica Acta, 1992, 203:159-165 [28] ASTM E698. Standard test method for Arrhenius kinetic constants for thermally unstable materials using differential scanning calorimetry and the Flynn/Wall/Ozawa method[M]. West Conshohocken, PA:ASTM International, 1999 [29] DOYLE C. Study on lifetime of energetic materials under different storage conditions[J]. J Appl Polym Sci, 1962, 6:639-645 [30] SIVAPIRAKASAM S P, NALLA MOHAMED M, SURIANARAYANAN M, et al. Evaluation of thermal hazards and thermo-kinetic parameters of a matchhead composition by DSC and ARC[J]. Thermochimica Acta, 2013, 557:13-19 [31] WU X, CHEN L, RAO G, et al. Impacts of thermal inertia factor on adiabatic decomposition of 40% mass content DCP in ethyl benzene[J]. Journal of Chemistry, 2020, 2020(2):1-8
|