[1] KASISOMAYAJULA S, JADHAV N, GELLING V J. Conductive polypyrrole and acrylate nanocomposite coatings: Mechanistic study on simultaneous photopolymerization[J]. Progress in Organic Coatings, 2016, 101: 440-454 [2] HEYDARNEZHAD H R, POURABBAS B, TAYEFI M. Conducting electroactive polymers via photopolymerization: A review on synthesis and applications[J]. Polymer-Plastics Technology and Engineering, 2018, 57(11): 1093-1109 [3] ALLONAS X, DIETLIN C, FOUASSIER J P, et al. Barton esters as new radical photoinitiators for flat panel display applications[J]. Journal of Photopolymer Science and Technology, 2008, 21(4): 505-509 [4] LEE K M, WARE T H, TONDIGLIA V P, et al. Initiatorless photopolymerization of liquid crystal monomers[J]. ACS Applied Materials & Interfaces, 2016, 8(41): 28040-28046 [5] LUO C, XU C, LV L, et al. Review of recent advances in inorganic photoresists[J]. RSC Advances, 2020, 10(14): 8385-8395 [6] CHENG E, TANG S, LI C, et al. Nano-patterns of photoresist fabricated by ultraviolet lithography technology[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(4): 2508-2513 [7] OLESHKEVICH A N, LAPCHUK N M, ODZHAEV V B, et al. Electronic conductivity in a P+-ion implanted positive photoresist[J]. Russian Microelectronics, 2020, 49(1): 55-61 [8] JOLANKI R, KANERVA L, ESTLANDER T. Occupational allergic contact dermatitis caused by epoxy diacrylate in ultraviolet-light-cured paint, and bisphenol A in dental composite resin[J]. Contact Dermatitis, 1995, 33(2): 94-99 [9] HOPE J. Light in weight: UV curing paint systems increase the versatility of plastics in weight saving applications[J]. Transactions of the IMF, 2013, 91(6): 301-305 [10] HUANG S, PODGÓRSKI M, ZHANG X, et al. Dental restorative materials based on thiol-michael photopolymerization[J]. Journal of Dental Research, 2018, 97(5): 530-536 [11] ABEDIN F, YE Q, SPENCER P. Hydrophilic dyes as photosensitizers for photopolymerization of dental adhesives[J]. Journal of Dentistry, 2020, doi:10.1016/j.jdent.2020.103405 [12] Dendukuri D, Pregibon D C, Collins J, et al. Continuous-flow lithography for high-throughput microparticle synthesis[J]. Nature Materials, 2006, 5: 365-369 [13] DENDUKURI D, GU S S, PREGIBON D C, et al. Stop-flow lithography in a microfluidic device[J]. Lab on a Chip, 2007, 7(7): 818-828 [14] CHUNG S E, PARK W, PARK H, et al. Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels[J]. Applied Physics Letters, 2007, doi:10.1063/1.2759988 [15] LAZA S C, POLO M, NEVES A A R, et al. Two-photon continuous flow lithography[J]. Advanced Materials, 2012, 24(10): 1304-1308 [16] TSOU T Y, CHEN H, HSIEH C C. Bihydrogel particles as free-standing mechanical pH microsensors[J]. Applied Physics Letters, 2013, doi:10.1063/1.4788718 [17] WANG S, WANG P, HSIEH I M, et al. Microfluidic synthesis of silica microcomponents using sol-gel process and stop-flow lithography[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93: 103-108 [18] CHEN L, AN H, DOYLE P S. Synthesis of nonspherical microcapsules through controlled polyelectrolyte coating of hydrogel templates[J]. Langmuir, 2015, 31(33): 9228-9235 [19] JANG J H, DENDUKURI D, HATTON T, et al. A route to three-dimensional structures in a microfluidic device: Stop-flow interference lithography[J]. Angewandte Chemie International Edition, 2007, 46(47): 9027-9031 [20] BONG K W, PREGIBON D C, DOYLE P S. Lock release lithography for 3D and composite microparticles[J]. Lab on a Chip, 2009, 9(7): 863-866 [21] Whitesides G M. The origins and the future of microfluidics[J]. Nature, 2006, 442(7101): 368-373 [22] WEIGL B H, BARDELL R L, CABRERA C R. Lab-on-a-chip for drug development[J]. Advanced Drug Delivery Reviews, 2003, 55(3): 349-377 [23] NEUZI P, GISELBRECHT S, LANGE K, et al. Revisiting lab-on-a-chip technology for drug discovery[J]. Nat Rev Drug Discov, 2012, 11(8): 620-632 [24] DITTRICH P S, MANZ A. Lab-on-a-chip: Microfluidics in drug discovery[J]. Nat Rev Drug Discov, 2006, 5(3): 210-218 [25] FIGEYS D, PINTO D. Lab-on-a-chip: A revolution in biological and medical sciences[J]. Analytical Chemistry, 2000, 72(9): 330A-335A [26] SONG H, TICE J D, ISMAGILOV R F. A microfluidic system for controlling reaction networks in time[J]. Angewandte Chemie International Edition, 2003, 42(7): 768-772 [27] THORSEN T, ROBERTS R W, ARNOLD F H, et al. Dynamic pattern formation in a vesicle-generating microfluidic device[J]. Physical Review Letters, 2001, 86(18): 4163-4166 [28] NISISAKO T, TORII T, HIGUCHI T. Droplet formation in a microchannel network[J]. Lab on a Chip, 2002, 2(1): 24-26 [29] TICE J D, SONG H, LYON A D, et al. Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers[J]. Langmuir, 2003, 19(22): 9127-9133 [30] TICE J D, LYON A D, ISMAGILOV R F. Effects of viscosity on droplet formation and mixing in microfluidic channels[J]. Analytica Chimica Acta, 2004, 507(1): 73-77 [31] LIU H, NAKAJIMA M, KIMURA T. Production of monodispersed water-in-oil emulsions using polymer microchannels[J]. Journal of the American Oil Chemists’ Society, 2004, 81(7): 705-711 [32] YEH C H, LIN Y. Using a cross-flow microfluidic chip for monodisperse UV-photopolymerized microparticles[J]. Microfluidics and Nanofluidics, 2009, 6(2): 277-283 [33] XIA B, JIANG Z, DEBROY D, et al. Cytocompatible cell encapsulation via hydrogel photopolymerization in microfluidic emulsion droplets[J]. Biomicrofluidics, 2017, doi:10.1063/1.4993122 [34] ANNA S L, BONTOUX N, STONE H A. Formation of dispersions using "flow focusing" in microchannels[J]. Applied Physics Letters, 2003, 82(3): 364-366 [35] QUEVEDO E, STEINBACHER J, MCQUADE D T. Interfacial polymerization within a simplified microfluidic device: Capturing capsules[J]. Journal of the American Chemical Society, 2005, 127(30): 10498-10499 [36] DREYFUS R, TABELING P, WILLAIME H. Ordered and disordered patterns in two-phase flows in microchannels[J]. Physical Review Letters, 2003, doi:10.1103/PhysRevLett.90.144505 [37] XU Q, NAKAJIMA M. The generation of highly monodisperse droplets through the breakup of hydrodynamically focused microthread in a microfluidic device[J]. Applied Physics Letters, 2004, 85(17): 3726-3728 [38] WARD T, FAIVRE M, ABKARIAN M, et al. Microfluidic flow focusing: Drop size and scaling in pressure versus flow-rate-driven pumping[J]. Electrophoresis, 2005, 26(19): 3716-3724 [39] WANG J, HU Y, DENG R, et al. Construction of multifunctional photonic crystal microcapsules with tunable shell structures by combining microfluidic and controlled photopolymerization[J]. Lab on a Chip, 2012, 12(16): 2795-2798 [40] AMATO D V, LEE H, WERNER J G, et al. Functional microcapsules via thiolene photopolymerization in droplet-based microfluidics[J]. ACS Applied Materials & Interfaces, 2017, 9(4): 3288-3293 [41] WU Q, YANG C, YANG J, et al. Photopolymerization of complex emulsions with irregular shapes fabricated by multiplex coaxial flow focusing[J]. Applied Physics Letters, 2018, doi:10.1063/1.5018207 [42] ORTIZ DE SOLORZANO I, MENDOZA G, ARRUEBO M, et al. Customized hybrid and NIR-light triggered thermoresponsive drug delivery microparticles synthetized by photopolymerization in a one-step flow focusing continuous microreactor[J]. Colloids and Surfaces B: Biointerfaces, 2020, doi:10.1016/j.colsurfb.2020.110904 [43] MICHAEL KÖHLER J, KRAUS I, FAERBER J, et al. Continuous-flow preparation of nanoporous metal/polymer composite particles by in situ synthesis of silver nanoparticles in photopolymerized acrylate/diethylene glycol droplets[J]. Journal of Materials Science, 2013, 48(5): 2158-2166 [44] VLADISAVLJEVIĆ G T, KHALID N, NEVES M A, et al. Industrial lab-on-a-chip: Design, applications and scale-up for drug discovery and delivery[J]. Advanced Drug Delivery Reviews, 2013, 65(11/12): 1626-1663 [45] SEO M, NIE Z, XU S, et al. Continuous microfluidic reactors for polymer particles[J]. Langmuir, 2005, 21(25): 11614-11622 [46] YEH C H, HUNG C Y, CHANG T, et al. An immunoassay using antibody-gold nanoparticle conjugate, silver enhancement and flatbed scanner[J]. Microfluidics and Nanofluidics, 2009, 6(1): 85-91 [47] SEO K D, KIM D S, SÁNCHEZ S. Fabrication and applications of complex-shaped microparticles via microfluidics[J]. Lab on a Chip, 2015, 15(18): 3622-3626 [48] NIE Z, LI W, SEO M, et al. Janus and ternary particles generated by microfluidic synthesis: Design, synthesis, and self-assembly[J]. Journal of the American Chemical Society, 2006, 128(29): 9408-9412 [49] GONG X, PENG S, WEN W, et al. Design and fabrication of magnetically functionalized core/shell microspheres for smart drug delivery[J]. Advanced Functional Materials, 2009, 19(2): 292-297 [50] KÖHLER J M, ROMANUS H, HVBNER U, et al. Formation of star-like and core-shell AuAg nanoparticles during two- and three-step preparation in batch and in microfluidic systems[J]. Journal of Nanomaterials, 2007, doi:10.1155/2007/98134 [51] SHUI L L, EIJKEL J C T, VAN DEN BERG A. Multiphase flow in microfluidic systems—Control and applications of droplets and interfaces[J]. Advances in Colloid and Interface Science, 2007, 133(1): 35-49 [52] GVNTHER A, JENSEN K F. Multiphase microfluidics: From flow characteristics to chemical and materials synthesis[J]. Lab on a Chip, 2006, 6(12): 1487-1503 [53] Landfester K, Musyanovych A. Hydrogels in miniemulsions[J]. Springer Science and Media, 2010, 234:39-63 [54] AHMED E M. Hydrogel: Preparation, characterization, and applications: A review[J]. Journal of Advanced Research, 2015, 6(2): 105-121 [55] REN Y, YU B, CONG H, et al. Preparation of monodisperse PEG microspheres by a T-junction microfluidic chip[J]. Advanced Materials Research, 2012, 465: 178-181 [56] KRUTKRAMELIS K, XIA B, OAKEY J. Monodisperse polyethylene glycol diacrylate hydrogel microsphere formation by oxygen-controlled photopolymerization in a microfluidic device[J]. Lab on a Chip, 2016, 16(8): 1457-1465 [57] DENDUKURI D, TSOI K, HATTON T A, et al. Controlled synthesis of nonspherical microparticles using microfluidics[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2005, 21(6): 2113-2116 [58] HUANG K, LAI T, LIN Y. Manipulating the generation of Ca-alginate microspheres using microfluidic channels as a carrier of gold nanoparticles[J]. Lab on a Chip, 2006, 6(7): 954-957 [59] HUANG K, LAI T, LIN Y. Using a microfluidic chip and internal gelation reaction for monodisperse calcium alginate microparticles generation[J]. Frontiers in Bioscience: A Journal and Virtual Library, 2007, 12: 3061-3067 [60] ZHAO B, VIERNES N O L, MOORE J S, et al. Control and applications of immiscible liquids in microchannels[J]. Journal of the American Chemical Society, 2002, 124(19): 5284-5285 [61] SILTANEN C, YAGHOOBI M, HAQUE A, et al. Microfluidic fabrication of bioactive microgels for rapid formation and enhanced differentiation of stem cell spheroids[J]. Acta Biomaterialia, 2016, 34: 125-132 [62] REECE A, XIA B, JIANG Z, et al. Microfluidic techniques for high throughput single cell analysis[J]. Current Opinion in Biotechnology, 2016, 40: 90-96 [63] TORRES-PADILLA M E, CHAMBERS I. Transcription factor heterogeneity in pluripotent stem cells: A stochastic advantage[J]. Development (Cambridge, England), 2014, 141(11): 2173-2181 [64] MACOSKO E Z, BASU A, SATIJA R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 2015, 161(5): 1202-1214 [65] CHOI C H, HWANG S, JEONG J M, et al. Microfluidic synthesis of anisotropic particles from Janus drop by in situ photopolymerization[J]. Biomedical Engineering Letters, 2012, 2(2): 95-99 [66] CHOI C H, YI H, HWANG S, et al. Microfluidic fabrication of complex-shaped microfibers by liquid template-aided multiphase microflow[J]. Lab on a Chip, 2011, 11(8): 1477-1483 [67] MOU C, JU X, ZHANG L, et al. Monodisperse and fast-responsive poly(N-isopropylacrylamide) microgels with open-celled porous structure[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2014, 30(5): 1455-1464 [68] WANG W, ZHANG M, XIE R, et al. Hole-shell microparticles from controllably evolved double emulsions[J]. Angewandte Chemie International Edition, 2013, 52(31): 8084-8087
|