[1] DRUETTA P, RAFFA P, PICCHIONI F. Chemical enhanced oil recovery and the role of chemical product design[J]. Applied Energy, 2019, doi:10.1016/j.apenergy.2019.113480 [2] LI P, ZHANG F, GONG Y, et al. Synthesis and properties of functional polymer for heavy oil viscosity reduction[J]. Journal of Molecular Liquids, 2021, doi:10.1016/j.molliq.2021.115635 [3] 孙焕泉. 薄储层超稠油热化学复合采油方法与技术[J]. 石油与天然气地质, 2020, 41(5): 1100-1106 SUN Huanquan. Hybrid thermal chemical recovery of thin extra-heavy oil reservoirs[J]. Oil & Gas Geology, 2020, 41(5): 1100-1106(in Chinese) [4] SÁNCHEZ S, ASCANIO G, SÁNCHEZ-MINERO F, et al. Conjugate thermal-hydrodynamic model for the study of heavy oil transport[J]. Journal of Petroleum Science and Engineering, 2019, 179: 997-1011 [5] DE ADEYANJU O A, OYEKUNLE L O. Experimental study of water-in-oil emulsion flow on wax deposition in subsea pipelines[J]. Journal of Petroleum Science and Engineering, 2019, doi:10.1016/j.petrol.2019.106294 [6] 廖辉, 王刚, 邓猛, 等. 海上普通稠油热-化学驱研究探索[J]. 当代化工, 2021, 50(1): 200-203 LIAO Hui, WANG Gang, DENG Meng, et al. Study on thermochemical flooding of offshore heavy oil[J]. Contemporary Chemical Industry, 2021, 50(1): 200-203(in Chinese) [7] 王大威, 靖波, 梁守成, 等. 掺稀降黏技术研究及其在渤海Q油田应用评价[J]. 现代化工, 2019, 39(11): 175-179 WANG Dawei, JING Bo, LIANG Shoucheng, et al. Study and application evaluation of blending lean oil technology in Bohai Q oilfield[J]. Modern Chemical Industry, 2019, 39(11): 175-179(in Chinese) [8] 徐德龙, 高金彪, 李超, 等. 超声波应用于稠油降黏的实验研究[J]. 声学技术, 2020, 39(6): 682-685 XU Delong, GAO Jinbiao, LI Chao, et al. Experimental study of heavy oil viscosity reduction by using ultrasonic wave[J]. Technical Acoustics, 2020, 39(6): 682-685(in Chinese) [9] LIU J, YANG F, XIA J, et al. Mechanism of ultrasonic physical-chemical viscosity reduction for different heavy oils[J]. ACS Omega, 2021, 6(3): 2276-2283 [10] 刘义刚, 展学成, 邹剑, 等. 自由基引发剂强化稠油催化水热裂解降黏行为[J]. 中国科学: 化学, 2018, 48(4): 451-458 LIU Yigang, ZHAN Xuecheng, ZOU Jian, et al. The aquathermolysis visbreaking behavior of heavy oil under the combined action of initiator[J]. Scientia Sinica Chimica, 2018, 48(4): 451-458(in Chinese) [11] 汪周杰, 李松岩, 韩瑞. 超稠油改质降黏体系实验研究[C]. 2020油气田勘探与开发国际会议. 成都: 2020 WANG Zhoujie, LI Songyan, HAN Rui. Exper-imental study on super-heavy oil upgrading and viscosity reduction system[C]. 2020 International Conference on Oil and Gas Field Exploration and Development. Chendu: 2020 (in Chinese) [12] ZHANG J, GAO H, XUE Q. Potential applications of microbial enhanced oil recovery to heavy oil[J]. Critical Reviews in Biotechnology, 2020, 40(4): 459-474 [13] 陈辉, 蔡微微, 陈昭伟, 等. 垦西特超稠油性能评价及降粘技术研究[J]. 内江科技, 2019, 40(7): 28, 61 CHEN Hui, CAI Weiwei, CHEN Zhaowei, et al. Kenxi special super heavy oil performance evaluation and viscosity reduction technology research [J]. Nei Jiang Science & Technology, 2019, 40(7): 28, 61(in Chinese) [14] LIU G, YANG J, SONG J, et al. Inhibition of asphaltene precipitation in blended crude oil using novel oil-soluble maleimide polymers[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 41(20): 2460-2470 [15] GANEEVA Y M, BARSKAYA E E, OKHOTNIKOVA E S, et al. Features of the composition of compounds trapped in asphaltenes of oils and bitumens of the bavly oil field[J]. Energy & Fuels, 2021, 35(3): 2493-2505 [16] SCHULER B, ZHANG Y, LIU F, et al. Overview of asphaltene nanostructures and thermodynamic applications[J]. Energy & Fuels, 2020, 34(12): 15082-15105 [17] RODRÍGUEZ-HAKIM M, ANAND S, TAJUELO J, et al. Asphaltene-induced spontaneous emulsification: Effects of interfacial co-adsorption and viscoelasticity[J]. Journal of Rheology, 2020, 64(4): 799-816 [18] SOUAS F, SAFRI A, BENMOUNAH A. A review on the rheology of heavy crude oil for pipeline transportation[J]. Petroleum Research, 2021, 6(2): 116-136 [19] LI T, XU J, ZOU R, et al. Resin from Liaohe heavy oil: Molecular structure, aggregation behavior, and effect on oil viscosity[J]. Energy & Fuels, 2018, 32(1): 306-313 [20] SANTOS J M, VETERE A, WISNIEWSKI A, et al. Modified SARA method to unravel the complexity of resin fraction(s) in crude oil[J]. Energy & Fuels, 2020, 34(12): 16006-16013 [21] QUAN H, XING L. The effect of hydrogen bonds between flow improvers with asphaltene for heavy crude oil[J]. Fuel, 2019, 237: 276-282 [22] ZHANG Y, SISKIN M, GRAY M R, et al. Mechanisms of asphaltene aggregation: Puzzles and a new hypothesis[J]. Energy & Fuels, 2020, 34(8): 9094-9107 [23] 刘小波. 潍北高凝点原油降凝降黏剂的研制[J]. 石油化工应用, 2020, 39(2): 74-80 LIU Xiaobo. Development of pour point and viscosity reducing agent for high freezing point crude oil in Weibei[J]. Petrochemical Industry Application, 2020, 39(2): 74-80(in Chinese) [24] LIMA F C D A, ALVIM R D S, MIRANDA C R. From single asphaltenes and resins to nanoaggregates: A computational study [J]. Energy & Fuels, 2017, 31(11): 11743-11754 [25] 曾继磊, 冯宇, 李小川, 等. 含蜡原油管道蜡质沉积影响因素[J]. 化工管理, 2020(36): 159-160 ZENG Jilei, FENG Yu, LI Xiaochuan, et al. Influencing factors of wax deposition in waxy crude oil pipelines [J]. Chemical Enterprise Management, 2020(36): 159-160(in Chinese) [26] HAJ-SHAFIEI S, WORKMAN B, TRIFKOVIC M, et al. In-situ monitoring of paraffin wax crystal formation and growth[J]. Crystal Growth & Design, 2019, 19(5): 2830-2837 [27] LEI Y, YU P, NI W, et al. Study on the kinetic process of asphaltene precipitation during crude oil mixing and its effect on the wax behavior of crude oil[J]. ACS Omega, 2021, 6(2): 1497-1504 [28] ZHANG X, YANG F, YAO B, et al. Synergistic effect of asphaltenes and octadecyl acrylate-maleic anhydride copolymers modified by aromatic pendants on the flow behavior of model waxy oils[J]. Fuel, 2020, doi:10.1016/j.fuel.2019.116381 [29] ZHANG S, HUO J, SUN X, et al. Molecular composition reveals unique rheological property of Karamay heavy crude oil[J]. Energy & Fuels, 2021, 35(1): 473-478 [30] PU W, SHEN C, TANG X, et al. Emulsification of acidic heavy oil for viscosity reduction and enhanced oil recovery[J]. Journal of Dispersion Science and Technology, 2020, 41(1): 54-61 [31] 田春来, 刘达, 李燕, 等. 一种耐温耐盐型两亲高分子稠油降粘剂及其制备方法: CN110041462B[P]. 2020-12-08 TIAN Chunlai, LIU Da, LI Yan, et al. Temperature-resistant and salt-resistant amphiphilic polymer heavy oil viscosity reducer and preparation method thereof: CN110041462B[P]. 2020-12-08 (in Chinese) [32] LIU J, ZHONG L, REN L, et al. Laboratory evaluation of fluidity of heavy oil emulsions in formation pores medium[J]. ACS Omega, 2021, 6(1): 623-632 [33] SUN J, ZHANG F, WU Y, et al. Overview of emulsified viscosity reducer for enhancing heavy oil recovery[J]. IOP Conference Series: Materials Science and Engineering, 2019, doi:10.1088/1757-899X/479/1/012009 [34] VAVRA E, PUERTO M, BISWAL S L, et al. A systematic approach to alkaline-surfactant-foam flooding of heavy oil: Microfluidic assessment with a novel phase-behavior viscosity map[J]. Scientific Reports, 2020, doi:10.1038/s41598-020-69511-z [35] YANG Z, MA G, HU Z, et al. Characterization of ternary compound viscosity reducer system on viscosity of viscous crude oil[J]. Petroleum Science and Technology, 2017, 35(19): 1910-1916 [36] WU Z, LIU H, WANG X, et al. Emulsification and improved oil recovery with viscosity reducer during steam injection process for heavy oil[J]. Journal of Industrial and Engineering Chemistry, 2018, 61: 348-355 [37] 戴名扬, 吴玉国, 李小玲, 等. 耐温耐盐复配型降黏剂乳化降黏实验研究[J]. 应用化工, 2018, 47(11): 2406-2409 DAI Mingyang, WU Yuguo, LI Xiaoling, et al. Experimental research on emulsification and viscosity reduction of temperature and salt tolerance viscosity combination match compounds reducers[J]. Applied Chemical Industry, 2018, 47(11): 2406-2409(in Chinese) [38] CHEN G, ZHOU Z, SHI X, et al. Synthesis of alkylbenzenesulfonate and its behavior as flow improver in crude oil[J]. Fuel, 2021, doi:10.1016/j.fuel.2020.119644 [39] 王艳萍, 孙风跃, 梁心怡, 等. 耐温耐盐乳化降黏剂的结构设计及其构效关系[J]. 精细化工, 2020, 37(4): 826-833 WANG Yanping, SUN Fengyue, LIANG Xinyi, et al. Structure design and structure-function relationship of emulsified viscosity reducers with temperature resistance and salt tolerance[J]. Fine Chemicals, 2020, 37(4): 826-833(in Chinese) [40] 任亚青, 吴本芳. 耐盐耐高温超稠油降黏剂的研制与性能评价[J]. 油田化学, 2020, 37(2): 318-324 REN Yaqing, WU Benfang. Development and performance evaluation of super heavy oil viscosity reducer with heat resistance and salt tolerance[J]. Oilfield Chemistry, 2020, 37(2): 318-324(in Chinese) [41] 孙永涛, 李兆敏, 孙玉豹, 等. 稠油耐高温乳化降黏剂AESO的合成及其性能[J]. 大庆石油地质与开发, 2021, 40(3): 103-108 SUN Yongtao, LI Zhaomin, SUN Yubao, et al. Synthesis and properties of high-temperature emulsified viscosity reducer AESO for heavy oil[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(3): 103-108(in Chinese) [42] 郭娜, 李亮, 张潇, 等. 高分子乳化降粘剂的制备与性能评价[J]. 应用化工, 2019, 48(10): 2308-2311 GUO Na, LI Liang, ZHANG Xiao, et al. Preparation and performance evaluation of polymer emulsifying viscosity reducer[J]. Applied Chemical Industry, 2019, 48(10): 2308-2311(in Chinese) [43] 马超, 张明华, 张雄, 等. 双亲性聚合物稠油降黏剂的合成及降黏性能[J]. 高分子材料科学与工程, 2020, 36(4): 61-66 MA Chao, ZHANG Minghua, ZHANG Xiong, et al. Synthesis and viscosity reduction properties of amphiphilic polymer heavy oil viscosity reducer[J]. Polymer Materials Science & Engineering, 2020, 36(4): 61-66(in Chinese) [44] LV X, FAN W, WANG Q, et al. Synthesis, characterization, and mechanism of copolymer viscosity reducer for heavy oil[J]. Energy & Fuels, 2019, 33(5): 4053-4061 [45] WANG X, ZHANG H, LIANG X, et al. New amphiphilic macromolecule as viscosity reducer with both asphaltene dispersion and emulsifying capacity for offshore heavy oil[J]. Energy & Fuels, 2021, 35(2): 1143-1151 [46] LIU J, LI L, XU Z, et al. CO2-responsive zwitterionic copolymer for effective emulsification and facile demulsification of crude heavy oil[J]. Journal of Molecular Liquids, 2021, doi:10.1016/j.molliq.2020.115166 [47] 郭睿, 高弯弯, 刘雪艳, 等. NPEAA与AEPH共改性苯基含氢硅油的制备及其破乳性能[J]. 化工进展, 2019, 38(6): 2922-2932 GUO Rui, GAO Wanwan, LIU Xueyan, et al. Preparation and demulsification properties of phenyl hydrosilicon oil modified by NPEAA and AEPHS[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2922-2932(in Chinese) [48] 郭睿, 马丽娟, 闫育蒙, 等. 二元聚合物的合成及在稠油W/O乳液中的应用[J]. 精细化工, 2021, 38(5): 1053-1060 GUO Rui, MA Lijuan, YAN Yumeng, et al. Synthesis of bipolymer and its application in heavy oil W/O emulsion[J]. Fine Chemicals, 2021, 38(5): 1053-1060(in Chinese) [49] ABDEL-AAL H K, ZOHDY K, ABDELKREEM M. Waste management in crude oil processing: Crude oil dehydration and desalting[J]. International Journal of Waste Resources, 2018, doi:10.4172/2252-5211.1000326 [50] 于世虎. 一剂双效稠油降黏剂的制备与性能评价[J]. 油田化学, 2019, 36(3): 518-522 YU Shihu. Preparation and performance evaluation of double-effect heavy oil viscosity reducer[J]. Oilfield Chemistry, 2019, 36(3): 518-522(in Chinese) [51] WANG D, LAI N. Development and application of polymetric surfactant emulsification and viscosity reduction system[J]. Petroleum, 2019, 5(4): 402-406 [52] 杨祖国, 高秋英, 任波, 等. 稠油油藏储层冷采用活性分子的性能评价与应用[J]. 油田化学, 2021, 38(1): 101-107 YANG Zuguo, GAO Qiuying, REN Bo, et al. Performance evaluation and application of cold production active polymer using in heavy oil reservoir[J]. Oilfield Chemistry, 2021, 38(1): 101-107(in Chinese) [53] ZHENG C, FU H, WANG Y, et al. Preparation and mechanism of hyperbranched heavy oil viscosity reducer[J]. Journal of Petroleum Science and Engineering, 2021, doi:10.1016/j.petrol.2020.107941 [54] AZEEM A, KUMAR R, PAL B, et al. Use of novel pour point depressant synthesized from vegetable oil for waxy crude oil[J]. Petroleum Science and Technology, 2020, 38(3): 185-193 [55] DU W, LI Y, YUN B, et al. Synthesis of cyclohexanone-alcohol hemiketals and evaluation as flow improver for waxy crude oil[J]. Petroleum Science and Technology, 2019, 37(7): 796-803 [56] GU X, LI Y, YAN J, et al. Synthesis and investigation of a spiro diborate as a clean viscosity-reducer and pour point depressor for crude oil[J]. Petroleum Chemistry, 2019, 59(6): 570-574 [57] 陈宁宁, 宋立新, 郑云重, 等. 新型聚合油溶性稠油降粘剂的合成及性能研究[J]. 化学试剂, 2017, 39(2): 134-136, 140 CHEN Ningning, SONG Lixin, ZHENG Yunzhong, et al. Synthetic and properties research of a novel viscosity reducer of oil-soluble polymers[J]. Chemical Reagents, 2017, 39(2): 134-136, 140(in Chinese) [58] ELARBE B, ELGANIDI I, RIDZUAN N, et al. Influence of poly (stearyl acrylate co-behenyl acrylate) as flow improvers on the viscosity reduction of Malaysian crude oil[J]. Materials Today: Proceedings, 2021, 42: 201-210 [59] 李洋, 杨欢, 刘磊, 等. 一种新型稠油降粘剂的制备与评价[J]. 合成化学, 2020, 28(7): 649-654 LI Yang, YANG Huan, LIU Lei, et al. Synthesis and evaluation of A new viscosity reducer for heavy oil[J]. Chinese Journal of Synthetic Chemistry, 2020, 28(7): 649-654(in Chinese) [60] ELGANIDI I, ELARBE B, ABDULLAH N, et al. Synthesis of a novel terpolymer of (BA-co-SMA-co-MA) as pour point depressants to improve the flowability of the Malaysian crude oil[J]. Materials Today: Proceedings, 2021, 42: 28-32 [61] MAO J, LIU J, PENG Y, et al. Quadripolymers as viscosity reducers for heavy oil[J]. Energy & Fuels, 2018, 32(1): 119-124 [62] XU J, XUE S, ZHANG J, et al. Molecular design of the amphiphilic polymer as a viscosity reducer for heavy crude oil: From mesoscopic to atomic scale[J]. Energy & Fuels, 2021, 35(2): 1152-1164 [63] 陈浩, 申雄, 于家义, 等. 一种稠油降黏剂、其制备方法及使用方法: CN111205843A[P]. 2020-05-29 CHEN Hao, SHEN Xiong, YU Jiayi, et al. A heavy oil viscosity reducer, its preparation method and use method: CN111205843A[P]. 2020-05-29 (in Chinese) [64] NEGI H, FAUJDAR E, SALEHEEN R, et al. Viscosity modification of heavy crude oil by using a chitosan-based cationic surfactant[J]. Energy & Fuels, 2020, 34(4): 4474-4483 [65] 毛金成, 亢智, 杨小江, 等. 一种高分子表面活性剂型稠油降粘剂及制备方法: CN110229654B[P]. 2021-06-04 [66] 李汉勇, 高航, 秦守强, 等. 含水稠油在纳米-微波协同下的降黏实验研究[J]. 西南石油大学学报(自然科学版), 2020, 42(5): 179-186 LI Hanyong, GAO Hang, QIN Shouqiang, et al. An experimental study on viscosity reduction of water-cut heavy oil under the synergistic action of nano catalyst and microwave[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(5): 179-186(in Chinese) [67] KE H, YUAN M, XIA S. A review of nanomaterials as viscosity reducer for heavy oil[J]. Journal of Dispersion Science and Technology, 2020: 1-12 [68] ANTO R, DESHMUKH S, SANYAL S, et al. Nanoparticles as flow improver of petroleum crudes: Study on temperature-dependent steady-state and dynamic rheological behavior of crude oils[J]. Fuel, 2020, doi:10.1016/j.fuel.2020.117873 [69] LI F, WANG X, PAN H, et al. Preparation of disk-like α-Fe2O3 nanoparticles and their catalytic effect on extra heavy crude oil upgrading[J]. Fuel, 2019, 251: 644-650 [70] 张辉, 李彦平, 任珊, 等. 一种稠油原位催化改质金属纳米晶降粘剂及其制备方法: CN107880866B[P]. 2021-03-23 [71] TAHERI-SHAKIB J, SHEKARIFARD A, NADERI H. Heavy crude oil upgrading using nanoparticles by applying electromagnetic technique[J]. Fuel, 2018, 232: 704-711 [72] 冯春妮, 刘鎏, 胡驰, 等. 二氧化硅/聚合物纳米复合材料的研究进展[J]. 包装工程, 2021, 42(3): 78-86 FENG Chunni, LIU Liu, HU Chi, et al. Advances in the research of silicon dioxide/polymer nanocomposites[J]. Packaging Engineering, 2021, 42(3): 78-86(in Chinese) [73] MAO J, KANG Z, YANG X, et al. Synthesis and performance evaluation of a nanocomposite pour-point depressant and viscosity reducer for high-pour-point heavy oil[J]. Energy & Fuels, 2020, 34(7): 7965-7973 [74] 袁美和, 马浩, 柯辉, 等. 纳米SiO2复合降黏剂的合成与性能评价[J]. 精细化工, 2021, 38(6): 1250-1256 YUAN Meihe, MA Hao, KE Hui, et al. Synthesis and performance evaluation of nano-silica composite viscosity reducer[J]. Fine Chemicals, 2021, 38(6): 1250-1256(in Chinese) [75] QING Y, YANG M, LI L, et al. Effect of organically modified nanosilica on the viscosity and rheological behavior of Karamay heavy crude oil[J]. Energy & Fuels, 2020, 34(1): 65-73 [76] BETIHA M A, MAHMOUD T, AL-SABAGH A M. Effects of 4-vinylbenzyl trioctylphosphonium-bentonite containing poly(octadecylacrylate-co-1-vinyldodecanoate) pour point depressants on the cold flow characteristics of waxy crude oil[J]. Fuel, 2020, doi: 10.1016/j.fuel.2020.118817 [77] SHARMA R, MAHTO V, VUTHALURU H. Synthesis of PMMA/modified graphene oxide nanocomposite pour point depressant and its effect on the flow properties of Indian waxy crude oil[J]. Fuel, 2019, 235: 1245-1259
|