[1] 王建昕. 汽车排气污染治理及催化转化器[M]. 北京:石油工业出版社,2000
[2] 郭丽红,刘咏,孟明. 稀燃NOx储存-还原催化剂[J]. 化学进展, 2009, 21(5):965-970 Guo Lihong, Liu Yong, Meng Ming. NOx storage reduction catalysts used for lean burn NOx removal[J]. Progress in Chemistry, 2009, 21(5):965-970(in Chinese)
[3] Kašpar J, Fornasiero P, Hickey N. Automotive catalytic converters:Current status and some perspectives[J]. Catal Today, 2003, 77:419-449
[4] Granger P, Parvulescu V I. Catalytic NOx abatement systems for mobile sources:From three-way to lean burn after-treatment technologies[J]. Chem Rev, 2011, 111:3155-3207
[5] Takahashi N, Shinjoha H, Iijimaa T, et al. The new concept 3-way catalyst for automotive lean-burn engine:NOx storage and reduction catalyst[J]. Catal Today, 1996, 27:63-69
[6] Matsumoto S. De-NOx catalyst for automotive lean-burn engine[J]. Catal Today, 1996, 29:43-45
[7] Roy S, Baiker A. NOx storage-reduction catalysis:From mechanism and materials properties to storage-reduction performance[J]. Chem Rev, 2009, 109(9):4054-4091
[8] Wang Q, Jong S. NOx storage and reduction over Cu/K2Ti2O5 in a wide temperature range:Activity, characterization, and mechanism[J]. Appl Catal A, 2009, 358:59-64
[9] Vijay R, Hendershot R J, Rivera-Jiménez S M, et al. Noble metal free NOx storage catalysts using cobalt discovered via high-throughput experimentation[J]. Catal Commun, 2005, 6:167-171
[10] Xu L, McCabe R, Ruona W, et al. Impact of a Cu-zeolite SCR catalyst on the performance of a diesel LNT+SCR system[J]. SAE Tech Pap, 2009, DOI:10.4271/2009-01-0285
[11] Liu J, Li X, Zhao Q, et al. The selective catalytic reduction of NO with propene over Cu-supported Ti-Ce mixed oxide catalysts:Promotional effect of ceria[J]. J Mol Catal A:Chem, 2013, 378:115-123
[12] Ohno T, Sarukawa K, Tokieda K, et al. Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases[J]. J Catal, 2001, 203:82-86
[13] Hamadanian M, Reisi-Vanani A, Majedi A. Synthesis, characterization and effect of calcination temperature on phase transformation and photocatalytic activity of Cu, S-codoped TiO2nanoparticles[J]. Appl Surf Sci, 2010, 256:1837-1844
[14] Yoong L S, Chong F K, Dutta B K. Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light[J]. Energy, 2009, 34:1652-1661
[15] Zhu H, Dong L, Chen Y. Effect of titania structure on the properties of its supported copper oxide catalysts[J]. J Colloid Interface Sci, 2011, 357:497-503
[16] Guerreroa S, Guzmána I, Aguila G, et al. Sodium-Promoted NO adsorption under lean conditions over Cu/TiO2 catalysts[J]. Catal Commun, 2009, 11:38-42
[17] Zhang Y, Liu D, Meng M, et al. A highly active and stable non-platinic lean NOx trap Catalyst MnOx-K2CO3/K2Ti8O17 with ultra-low NOx to N2O selectivity[J]. Ind Eng Chem Res, 2014, 53:8416-8425
[18] Liu C, He M, Lu X, et al. Reaction and crystallization mechanism of potassium dititanate fibers synthesized by low-temperature calcination[J]. Cryst Growth Des, 2005, 5:1399-1404
[19] Hadjiivanov K I. Identification of neutral and charged NxOy surface species by IR spectroscopy[J]. Catal Rev Sci Eng, 2000, 42:71-144
[20] Morterra C, Magnacca G. A case study:Surface chemistry and surface structure of catalytic aluminas, as studied by vibrational spectroscopy of adsorbed species[J]. Catal Today, 1996, 27:497-532
[21] Prinetto F, Manzoli M, Morandi S, et al. Pt-K/Al2O3 NSR catalysts:Characterization of morphological, structural and surface properties[J]. J Phys Chem C, 2009, 114:1127-1138
|