[1] Kanamori K. Structures and properties of multinuclear vanadium(III) complexes: Seeking a clue to understand the role of vanadium(III) in aseidians[J]. Coordination Chemistry Reviews, 2003, 237(1): 147-161
[2] Sum E, Skyllas M K. A study of the V(II)/V(III) redox couple for redox flow cell application[J]. Journal of Power Sources, 1985, 15: 179-190
[3] Sum E, Rychcik M, Skyllas M K. Investigation of V(IV)/V(V) system for use in positive half-cell of a redox battery[J]. Journal of Power Sources, 1985, 16: 1-9
[4] Skyllas M K, Robin R. All vanadium redox battery: US,P4786567[P]. 1988-11-22
[5] Mohammadi T, Skyllas-Kazacos M. Modification of anion-exchage membranes for vanadium redox flow battery applications[J]. Power Sources, 1996, 63: 179-186
[6] Skyllas-Kazacos M, Grossmith F. Efficient vanadium redox flow cell[J]. Journal of the Electrochemical Society, 1987, 134: 2 950-2 953
[7] Kausar N, Howe R, Skyllas-Kazacos M. Raman spectroscopy studies of concentrated vanadium redox battery positive electrolytes[J]. Journal of Applied Electrochemistry, 2001, 31: 1 327-1 332
[8] Wu T, Huang K, Liu S, et al. Hydrothermal ammoniated treatment of PAN-graphite felt for vanadium redox flow battery[J]. Journal of Solid State Electrochemistry, 2012, 16: 579-585
[9] Li S, Huang K, Liu S, et al. Effect of organic additives on positive electrolyte for vanadium redox battery[J]. Electrochemical Acta, 2011, 56: 5 483-5 487
[10] Qian P, Zhang H, Chen J, et al. A novel electrode-bipolar plate assembly for vanadium redox flow battery applications[J]. Journal of Power Sources, 2008, 175: 613-620
|