[1] Pei J,Zhang J. Critical review of catalytic oxidization and chemisorption methods for indoor formaldehyde removal [J]. HVAC & R Research, 2011,17 (4):476-503
[2] Maddalena R,Russell M,Sullivan D P,et al. Formaldehyde and other volatile organic chemical emissions in four FEMA temporary housing units [J]. Environmental Science & Technology, 2009, 43(15): 5 626-5 632
[3] Yang J,Qin Y,Zeng Y,et al. Progress in endogenous formaldehyde, formaldehyde toxicity and formaldehyde inhibitors [J]. Food Science, 2014, 35 (1):294-297
[4] Osborne H. Non-Iconic abstraction [J]. British Journal of Aesthetics,1976,16 (4): 291-304
[5] Zhang C,Liu F,Zhai Y,et al. Alkali-Metal-Promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures [J]. Angewandte Chemie International Edition, 2012,51(38):9 628-9 632
[6] Chen B,Shi C,Crocker M,et al. Catalytic removal of formaldehyde at room temperature over supported gold catalysts [J]. Applied Catalysis B: Environmental,2013,(132/133):245-255
[7] Huang H,Leung D Y C. Complete oxidation of formaldehyde at room temperature using TiO2supported metallic Pd nanoparticles [J]. ACS Catalysis,2011,1 (4): 348-354
[8] Zhang C,Li Y,Wang Y,et al. Sodium-Promoted Pd/TiO2 for catalytic oxidation of formaldehyde at ambient temperature [J]. Environmental Science & Technology, 2014, 48 (10): 5 816-5 822
[9] Qu Z,Shen S,Chen D,et al. Highly active Ag/SBA-15 catalyst using post-grafting method for formaldehyde oxidation [J]. Journal of Molecular Catalysis A: Chemical, 2012, 356: 171-177
[10] Shi C,Chen B,Li X,et al. Catalytic formaldehyde removal by "storage-oxidation" cycling process over supported silver catalysts [J]. Chemical Engineering Journal,2012,(200/202): 729-737
[11] Zhang C,He H,Tanaka K. Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature [J]. Applied Catalysis B: Environmental, 2006, 65 (1/2): 37-43
[12] Xie X,Li Y,Liu Z,et al. Low-Temperature oxidation of CO catalysed by Co3O4 nanorods [J]. Nature, 2009, 458 (7 239): 746-749
[13] Bai B,Li J. Positive effects of K+ ions on three-dimensional mesoporous Ag/Co3O4 catalyst for HCHO oxidation [J]. ACS Catalysis,2014,4 (8):2 753-2 762
[14] Rumplecker A,Kleitz F,Salabas E L,et al. Hard templating pathways for the synthesis of nanostructured porous Co3O4 [J]. Chemistry of Materials,2007,19 (3):485-496
[15] Bai B,Arandiyan H,Li J. Comparison of the performance for oxidation of formaldehyde on nano-Co3O4, 2D-Co3O4, and 3D-Co3O4 catalysts [J]. Applied Catalysis B: Environmental,2013,(142/143):677-683
[16] Derekaya F B,Güldür. Activity and selectivity of CO oxidation in H2 rich stream over the Ag/Co/Ce mixed oxide catalysts [J]. International Journal of Hydrogen Energy,2010,35 (6):2 247-2 261
[17] Tan B J,Klabunde K J,Sherwood P M A. XPS studies of solvated metal atom dispersed catalysts-Evidence for layered cobalt manganese particles on aluninaand silica [J]. Journal of the American Chemical Society,1991,113 (3):855-861
[18] Bonnelle J P,Grimblot J,Dhuysser A. Influence of polarization of bonds on ESCA spectra of cobalt oxides [J]. Journal of Electron Spectroscopy and Related Phenomena,1975,7 (2):151-162
[19] Amri A,Duan X,Yin C Y,et al. Solar absorptance of copper-cobalt oxide thin film coatings with nano-size, grain-like morphology: Optimization and synchrotron radiation XPS studies [J]. Applied Surface Science,2013,275:127-135
[20] Dupin J C,Gonbeau D,Benqlilou-Moudden H,et al. XPS analysis of new lithium cobalt oxide thin-films before and after lithium deintercalation [J]. Thin Solid Films,2001,384 (1):23-32
|