[1] 陈诗瑶, 申峻, 王玉高, 等. 甲醇制芳烃反应及生产工艺研究进展[J]. 现代化工, 2022, 42(2): 57-60, 67 CHEN Shiyao, SHEN Jun, WANG Yugao, et al. Progress in reaction and production process for methanol to aromatics[J]. Modern Chemical Industry, 2022, 42(2): 57-60, 67(in Chinese)
[2] NIZIOLEK A M, ONEL O, GUZMAN Y A, et al. Biomass-based production of benzene, toluene, and xylenes via methanol: Process synthesis and deterministic global optimization[J]. Energy & Fuels, 2016, 30(6): 4970-4998
[3] MEYERS R A. Handbook of petroleum refining processes[M]. 3rd ed. New York: McGraw-Hill, 2004
[4] KENT J A. Kent and Riegel's Handbook of industrial chemistry and biotechnology[M]. Boston, MA: Springer US, 2007
[5] WITTCOFF H A, REUBEN B G, PLOTKIN J S. Industrial organic chemicals[M]. New York: John Wiley & Sons Inc, 2004
[6] 黄格省, 包力庆, 丁文娟, 等. 我国煤制芳烃技术发展现状及产业前景分析[J]. 煤炭加工与综合利用, 2018(2): 6-10 HUANG Gesheng, BAO Liqing, DING Wenjuan, et al. An analysis on status and prospect of Chinese coal to aromatics technologies[J]. Coal Processing & Comprehensive Utilization, 2018(2): 6-10(in Chinese)
[7] 代成义, 陈中顺, 杜康, 等. 甲醇制芳烃催化剂及相关工艺研究进展[J]. 化工进展, 2020, 39(12): 5029-5041 DAI Chengyi, CHEN Zhongshun, DU Kang, et al. Research progress of catalysts and related technologies for methanol to aromatics[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5029-5041(in Chinese)
[8] 施丽丽, 方栩, 刘殿华, 等. Zn改性ZSM-5催化甲醇制芳烃反应动力学[J]. 天然气化工(C1化学与化工), 2017, 42(2): 40-44, 49 SHI Lili, FANG Xu, LIU Dianhua, et al. Kinetic model for reaction of methanol to aromatics on Zn modified ZSM-5 catalyst[J]. Natural Gas Chemical Industry, 2017, 42(2): 40-44, 49(in Chinese)
[9] 徐亚荣, 蒋斌波, 冯丽梅, 等. 甲醇制芳烃(MTA)反应动力学的研究[J]. 聚酯工业, 2019, 32(6): 7-12 XU Yarong, JIANG Binbo, FENG Limei, et al. Study on reaction dynamic of methanol to aromatic[J]. Polyester Industry, 2019, 32(6): 7-12(in Chinese)
[10] 许雄飞, 刘鹏龙, 张玮, 等. 两段法固定床甲醇制芳烃产物预测多元非线性回归模型[J]. 化工学报, 2022, 73(2): 838-846 XU Xiongfei, LIU Penglong, ZHANG Wei, et al. Multivariate nonlinear regression model of methanol to aromatics by two-state fixed bed for product prediction[J]. CIESC Journal, 2022, 73(2): 838-846(in Chinese)
[11] 刘鹏龙, 许雄飞, 张玮, 等. 甲醇制芳烃K-means-PSO-SVR局部建模及优化[J]. 化工进展, 2022, 41(9): 4691-4700 LIU Penglong, XU Xiongfei, ZHANG Wei, et al. Local modeling and optimization of K-means-PSO-SVR for methanol to aromatics[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4691-4700(in Chinese)
[12] 陈良臣, 傅德印. 面向小样本数据的机器学习方法研究综述[J]. 计算机工程, 2022, 48(11): 1-13 CHEN Liangchen, FU Deyin. Survey on machine learning methods for small sample data[J]. Computer Engineering, 2022, 48(11): 1-13(in Chinese)
[13] 赵凯琳, 靳小龙, 王元卓. 小样本学习研究综述[J]. 软件学报, 2021, 32(2): 349-369 ZHAO Kailin, JIN Xiaolong, WANG Yuanzhuo. Survey on few-shot learning[J]. Journal of Software, 2021, 32(2): 349-369(in Chinese)
[14] ROYLE J A, DORAZIO R M, LINK W A. Analysis of multinomial models with unknown index using data augmentation[J]. Journal of Computational and Graphical Statistics, 2007, 16(1): 67-85
[15] 张晓晗. 基于机器学习的工业过程数据驱动建模及数据扩充方法研究[D]. 北京: 北京化工大学, 2022 ZHANG Xiaohan. Research on data-driven modeling and data augmentation method for industrial processes based on machine learning[D].Beijing: Beijing University of Chemical Technology, 2022 (in Chinese)
[16] 朱宝, 陈忠圣, 余乐安. 一种新颖的小样本整体趋势扩散技术[J]. 化工学报, 2016, 67(3): 820-826 ZHU Bao, CHEN Zhongsheng, YU Lean. A novel mega-trend-diffusion for small sample[J]. CIESC Journal, 2016, 67(3): 820-826(in Chinese)
[17] 陆荣秀, 赖路璐, 杨辉, 等. 基于虚拟样本生成的铈镨/钕组分含量预测[J]. 传感器与微系统, 2022, 41(7): 152-156, 160 LU Rongxiu, LAI Lulu, YANG Hui, et al. Prediction of CePr/Nd component content based on virtual sample generation[J]. Transducer and Microsystem Technologies, 2022, 41(7): 152-156, 160(in Chinese)
[18] LI D, CHEN C, CHANG C, et al. A tree-based-trend-diffusion prediction procedure for small sample sets in the early stages density estimation and confidence level method [J]. Chinese Journal of Aeronautics, 2012, 25(6): 879-886
[19] ZHU Q, CHEN Z, ZHANG X, et al. Dealing with small sample size problems in process industry using virtual sample generation: A Kriging-based approach[J]. Soft Computing, 2020, 24(9): 6889-6902
[20] ZHANG X, XU Y, HE Y, et al. Novel manifold learning based virtual sample generation for optimizing soft sensor with small data[J]. ISA Transactions, 2021, 109: 229-241
[21] CHEN Z, ZHU Q, XU Y, et al. Integrating virtual sample generation with input-training neural network for solving small sample size problems: Application to purified terephthalic acid solvent system[J]. Soft Computing, 2021, 25(8): 6489-6504
[22] WANG Y, HUANG Y, LIN T, et al. Modeling melodic feature dependency with modularized variational auto-encoder[EB/OL]. 2018: arXiv: 1811.00162. http://arxiv.org/abs/1811.00162
[23] 陈忠圣, 朱梅玉, 贺彦林, 等. 基于分位数回归CGAN的虚拟样本生成方法及其过程建模应用[J]. 化工学报, 2021, 72(3): 1529-1538 CHEN Zhongsheng, ZHU Meiyu, HE Yanlin, et al. Quantile regression CGAN based virtual samples generation and its applications to process modeling[J]. CIESC Journal, 2021, 72(3): 1529-1538(in Chinese)
[24] 李文怀, 李凯旋, 张庆庚, 等. 一种固定床绝热反应器两步法甲醇转化制取烃类混合物的方法: CN106220462B[P]. 2019-01-25 LI Wenhuai, LI Kaixuan, ZHANG Qinggeng, et al. Method for preparing hydrocarbon mixture by means of two-step method methanol conversion through adiabatic fixed-bed reactor: CN106220462B[P]. 2019-01-25 (in Chinese)
[25] 张宝珠. 甲醇转化制芳烃(MTA)反应的研究[D]. 辽宁大连: 大连理工大学, 2013 ZHANG Baozhu. Study on methanol to aromatics (MTA) reaction[D]. Liaoning Dalian: Dalian University of Technology, 2013 (in Chinese)
[26] POGGIO T, VETTER T. Recognition and structure from one 2D model view: Observations on prototypes, object classes and symmetries[R]. Technical Report A. I. Memo 1347, MA, USA, Massachusetts Institute of Technology Cambridge, 1992
[27] NIYOGI P, GIROSI F, POGGIO T. Incorporating prior information in machine learning by creating virtual examples[J]. Proceedings of the IEEE, 1998, 86(11): 2196-2209
[28] LI D, WEN I. A genetic algorithm-based virtual sample generation technique to improve small data set learning[J]. Neurocomputing, 2014, 143: 222-230
[29] HUANG G, ZHU Q, SIEW C K. Extreme learning machine: A new learning scheme of feedforward neural networks[C]//2004 IEEE International Joint Conference on Neural Networks. Budapest, Hungary. IEEE, 2004: 985-990
[30] MICHALOPOULOS J, PAPADOKONSTADAKIS S, ARAMPATZIS G, et al. Modelling of an industrial fluid catalytic cracking unit using neural networks[J]. Chemical Engineering Research and Design, 2001, 79(2): 137-142
[31] 王丹丹, 汤健, 夏恒, 等. 基于多目标PSO混合优化的虚拟样本生成[J]. 自动化学报, 2024, 50(4): 790-811 WANG Dandan, TANG Jian, XIA Heng, et al. Virtual sample generation method based on hybrid optimization with multi-objective PSO[J]. Acta Automatica Sinica, 2024, 50(4): 790-811(in Chinese)
|