[1] JI W, JACOBI A M, HE Y, et al. Summary and evaluation on the heat transfer enhancement techniques of gas laminar and turbulent pipe flow[J]. International Journal of Heat and Mass Transfer, 2017, 111: 467-483
[2] AWAIS M, BHUIYAN A A. Recent advancements in impedance of fouling resistance and particulate depositions in heat exchangers[J]. International Journal of Heat and Mass Transfer, 2019, 141: 580-603
[3] YANG J, XIAO Y, HE Q, et al. Study on flow boiling heat transfer in segmented internally-threaded tube[J]. Journal of Applied Fluid Mechanics, 2022, 15(5): 1417-1426
[4] CHIOU C B, LU D, CHEN C, et al. Heat transfer correlations of forced convective boiling for pure refrigerants in micro-fin tubes[J]. Applied Thermal Engineering, 2011, 31(5): 820-826
[5] NIKOLAENKO Y E, ALEKSEIK Y S, KOZAK D V, et al. Research on two-phase heat removal devices for power electronics[J]. Thermal Science and Engineering Progress, 2018, 8: 418-425
[6] 申道明, 桂超, 刘亚萍, 等. 内螺纹管换热器的综合性能分析[J]. 低温工程, 2019(5): 14-20, 74 SHEN Daoming, GUI Chao, LIU Yaping, et al. Comprehensive performance analysis of the heat exchanger with rifled tube[J]. Cryogenics, 2019(5): 14-20, 74(in Chinese)
[7] MURALIKRISHNA Y, MOHAN JAGADEESH KUMAR M, ARAVIND B, et al. Comparative studies on performance of plain, perforated, threaded, and threaded-perforated pin fin: A numerical approach[J]. Heat Transfer, 2023, 52(4): 3333-3352
[8] LEI X, GUO Z, PENG R, et al. Numerical analysis on the heat transfer characteristics of supercritical water in vertically upward internally ribbed tubes[J]. Water, 2021, 13(5): 621
[9] LI X, LIU S, MO X, et al. Investigation on convection heat transfer augment in spirally corrugated pipe[J]. Energies, 2023, 16(3): 1063
[10] ZHANG L, LI X. A study on boiling heat transfer in three-phase circulating fluidized bed[J]. Chemical Engineering Journal, 2000, 78(2/3): 217-223
[11] WEN J, ZHOU H, LI X. Performance of a new vapor-liquid-solid three-phase circulating fluidized bed evaporator[J]. Chemical Engineering and Processing: Process Intensification, 2004, 43(1): 49-56
[12] HASAN B O, JWAIR E A, CRAIG R A. The effect of heat transfer enhancement on the crystallization fouling in a double pipe heat exchanger[J]. Experimental Thermal and Fluid Science, 2017, 86: 272-280
[13] JIANG F, YANG M, QI G, et al. Heat transfer and antiscaling performance of a Na2SO4 circulating fluidized bed evaporator[J]. Applied Thermal Engineering, 2019, 155: 123-134
[14] JIANG F, DONG X, QI G, et al. Heat-transfer performance and pressure drop in a gas-solid circulating fluidized bed spiral-plate heat exchanger[J]. Applied Thermal Engineering, 2020, 171: 115091
[15] 谭雪梅,刘世杰,赵冰,等. 循环流化床锅炉气-固两相流换热研究进展[J]. 华电技术,2021,10(43):61-67
[16] MURATA H, OKA H, ADACHI M, et al. Effects of the ship motion on gas-solid flow and heat transfer in a circulating fluidized bed[J]. Powder Technology, 2012, 231: 7-17
[17] PRONK P, INFANTE FERREIRA C A, WITKAMP G J. Prevention of fouling and scaling in stationary and circulating liquid-solid fluidized bed heat exchangers: Particle impact measurements and analysis[J]. International Journal of Heat and Mass Transfer, 2009, 52(15/16): 3857-3868
[18] ABBASI M, SOTUDEH-GHAREBAGH R, MOSTOUFI N, et al. Non-intrusive monitoring of bubbles in a gas-solid fluidized bed using vibration signature analysis[J]. Powder Technology, 2009, 196(3): 278-285
[19] ABBASI M, SOTUDEH-GHAREBAGH R, MOSTOUFI N, et al. Nonintrusive characterization of fluidized bed hydrodynamics using vibration signature analysis[J]. AIChE Journal, 2010, 56(3): 597-603
[20] MA Y, LIU M, AN M, et al. Experimental investigation of collision behavior of fluidized solid particles on the tube wall of a graphite evaporator by vibration signal analysis[J]. Powder Technology, 2017, 316: 303-314
[21] XU X, LIU M, MA Y, et al. Effects of fluidized solid particles on vibration behaviors of a graphite tube evaporator with an internal vapor-liquid flow[J]. Applied Thermal Engineering, 2016, 100: 1229-1244
[22] 姜峰, 刘艺, 齐国鹏, 等. 液-固下行循环流化床中的颗粒碰撞行为[J]. 化学工业与工程, 2022, 39(3): 49-59 JIANG Feng, LIU Yi, QI Guopeng, et al. Study on particle collision behavior in a liquid-solid down-flow circulating fluidized bed[J]. Chemical Industry and Engineering, 2022, 39(3): 49-59(in Chinese)
[23] 姜峰, 徐迪, 齐国鹏, 等. Na2SO4循环流化床蒸发器中的颗粒碰撞行为和传热性能[J]. 化学工业与工程, 2023, 40(4): 37-49 JIANG Feng, XU Di, QI Guopeng, et al. Particle collision behavior and heat transfer performance in a Na2SO4 circulating fluidized bed evaporator[J]. Chemical Industry and Engineering, 2023, 40(4): 37-49(in Chinese)
[24] ZHAO L, HE Y. Power spectrum estimation of the welch method based on imagery EEG[J]. Applied Mechanics and Materials, 2013, 278/279/280: 1260-1264
[25] 沈再阳. MATLAB信号处理[M]. 北京: 清华大学出版社, 2017: 240-241 SHEN Zaiyang. MATLAB signal processing[M]. Beijing: Tsinghua University Press, 2017: 240-241(in Chinese)
[26] MONJI H, MATSUI G, SAITO T. Pressure drop reduction of liquid-particles two-phase flow with nearly equal density[M]//Multiphase Flow 1995. Amsterdam: Elsevier, 1995: 355-365
[27] JIANG F, ZHAO P, QI G, et al. Flow characteristics in a horizontal liquid-solid circulating fluidized bed[J]. Powder Technology, 2019, 342: 24-35
[28] ESCUDERO D, HEINDEL T J. Bed height and material density effects on fluidized bed hydrodynamics[J]. Chemical Engineering Science, 2011, 66(16): 3648-3655
[29] LIU H, LI J, WANG Q. Simulation of gas-solid flow characteristics in a circulating fluidized bed based on a computational particle fluid dynamics model[J]. Powder Technology, 2017, 321: 132-142
|