[1] Fraunhofer Institute. Fraunhofer presents hydrogen roadmap for Germany[Z]. German Energy Solutions Initiative, 2020 [2] BOGDANOV D, RAM M, AGHAHOSSEINI A, et al. Low-cost renewable electricity as the key driver of the global energy transition towards sustainability[J]. Energy, 2021, 227: 120467 [3] LōBRE É, STRINGER M, SVOBODOVA K, et al. The social and environmental complexities of extracting energy transition metals[J]. Nature Communications, 2020, 11(1): 4823 [4] HERRINGTON R. Mining our green future[J]. Nature Reviews Materials, 2021, 6(6): 456-458 [5] BAMANA G, MILLER J D, YOUNG S L, et al. Addressing the social life cycle inventory analysis data gap: Insights from a case study of cobalt mining in the Democratic Republic of the Congo[J]. One Earth, 2021, 4(12): 1704-1714 [6] HU S, GUO B, DING S, et al. A comprehensive review of alkaline water electrolysis mathematical modeling[J]. Applied Energy, 2022, 327: 120099 [7] URSUA A, GANDIA L M, SANCHIS P. Hydrogen production from water electrolysis: Current status and future trends[J]. Proceedings of the IEEE, 2012, 100(2): 410-426 [8] CHEN Z, KUMAR S S, RAMAKRISHNA S, et al. Synthesis of polysulfone and zirconium oxide coated asbestos composite separators for alkaline water electrolysis[J]. Int J Chem Eng Process Technol, 2017, 3: 1035 [9] 郭雅婷, 邓甜音, 刘艳莹, 等. 碱性电解水制氢隔膜和阳极材料性能研究[J]. 综合智慧能源, 2022, 44(5):64-68 GUO Yating, DENG Tianyin, LIU Yanying, et al. Research on the performance of membranes and anode materials in alkaline water electrolysis[J]. Integrated Intelligent Energy, 2022, 44(5): 64-68(in Chinese) [10] 杨成玉, 马军, 李广玉, 等. 大型碱性电解水制氢装备多对一的应用与实践[J]. 太阳能, 2022(5): 103-114 YANG Chengyu, MA Jun, LI Guangyu, et al. Application and practice of many-to-one large-scale alkaline water electrolysis hydrogen production equipment[J]. Solar Energy, 2022(5): 103-114(in Chinese) [11] SHIVA KUMAR S, HIMABINDU V. Hydrogen production by PEM water electrolysis-A review[J]. Materials Science for Energy Technologies, 2019, 2(3): 442-454 [12] ZENG Y, ZHANG H, WANG Z, et al. Nano-engineering of a 3D-ordered membrane electrode assembly with ultrathin Pt skin on open-walled PdCo nanotube arrays for fuel cells[J]. Journal of Materials Chemistry A, 2018, 6(15): 6521-6533 [13] KANG Z, YANG G, MO J, et al. Novel thin/tunable gas diffusion electrodes with ultra-low catalyst loading for hydrogen evolution reactions in proton exchange membrane electrolyzer cells[J]. Nano Energy, 2018, 47: 434-441 [14] KUSOGLU A, WEBER A Z. New insights into perfluorinated sulfonic-acid ionomers[J]. Chemical Reviews, 2017, 117(3): 987-1104 [15] KIBSGAARD J, CHORKENDORFF I. Considerations for the scaling-up of water splitting catalysts[J]. Nature Energy, 2019, 4(6): 430-433 [16] LI A, SUN Y, YAO T, et al. Earth-abundant transition-metal-based electrocatalysts for water electrolysis to produce renewable hydrogen[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2018, 24(69): 18334-18355 [17] KARI J, OLSEN J P, JENSEN K, et al. Sabatier principle for interfacial (heterogeneous) enzyme catalysis[J]. ACS Catalysis, 2018, 8(12): 11966-11972 [18] KEMPPAINEN E, BODIN A, SEBOK B, et al. Scalability and feasibility of photoelectrochemical H2 evolution: The ultimate limit of Pt nanoparticle as an HER catalyst[J]. Energy & Environmental Science, 2015, 8(10): 2991-2999 [19] XU H, SHANG H, WANG C, et al. Ultrafine Pt-based nanowires for advanced catalysis[J]. Advanced Functional Materials, 2020, 30(28): 2000793 [20] CHENG X, LI Y, ZHENG L, et al. Highly active, stable oxidized platinum clusters as electrocatalysts for the hydrogen evolution reaction[J]. Energy & Environmental Science, 2017, 10(11): 2450-2458 [21] SHIRVANIAN P, VAN BERKEL F. Novel components in Proton Exchange Membrane (PEM) Water Electrolyzers (PEMWE): Status, challenges and future needs. A mini review[J]. Electrochemistry Communications, 2020, 114: 106704 [22] WANG J, JI Y, YIN R, et al. Transition metal-doped ultrathin RuO2 networked nanowires for efficient overall water splitting across a broad pH range[J]. Journal of Materials Chemistry A, 2019, 7(11): 6411-6416 [23] LIN Y, TIAN Z, ZHANG L, et al. Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media[J]. Nature Communications, 2019, 10(1): 1-13 [24] DU K, ZHANG L, SHAN J, et al. Interface engineering breaks both stability and activity limits of RuO2 for sustainable water oxidation[J]. Nature Communications, 2022, 13(1): 1-9 [25] WILBERFORCE T, IJAODOLA O, OGUNGBEMI E, et al. Technical evaluation of proton exchange membrane (PEM) fuel cell performance-A review of the effects of bipolar plates coating[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109286 [26] LEE S J, HUANG C, CHEN Y. Investigation of PVD coating on corrosion resistance of metallic bipolar plates in PEM fuel cell[J]. Journal of Materials Processing Technology, 2003, 140(1/2/3): 688-693 [27] BORUP R L, VANDERBORGH N E. Design and testing criteria for bipolar plate materials for PEM fuel cell applications[J]. MRS Proceedings, 1995, 393(1): 151 [28] ROJAS N, SÁNCHEZ-MOLINA M, SEVILLA G, et al. Coated stainless steels evaluation for bipolar plates in PEM water electrolysis conditions[J]. International Journal of Hydrogen Energy, 2021, 46(51): 25929-25943 [29] HUBERT M A, KING L A, JARAMILLO T F. Evaluating the case for reduced precious metal catalysts in proton exchange membrane electrolyzers[J]. ACS Energy Letters, 2022, 7(1): 17-23 [30] SHIRVANIAN P, LOH A, SLUIJTER S, et al. Novel components in anion exchange membrane water electrolyzers (AEMWE’s): Status, challenges and future needs. A mini review[J]. Electrochemistry Communications, 2021, 132: 107140 [31] YU J, ZHONG Y, WU X, et al. Bifunctionality from synergy: CoP nanoparticles embedded in amorphous CoOx nanoplates with heterostructures for highly efficient water electrolysis[J]. Advanced Science, 2018, 5(9): 1800514 [32] SUN H, YAN Z, LIU F, et al. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution[J]. Advanced Materials, 2020, 32(3): 1806326 [33] WAN L, XU Z, XU Q, et al. Key components and design strategy of the membrane electrode assembly for alkaline water electrolysis[J]. Energy & Environmental Science, 2023, 16(4): 1384-1430 [34] RAZMJOOEI F, MORAWIETZ T, TAGHIZADEH E, et al. Increasing the performance of an anion-exchange membrane electrolyzer operating in pure water with a nickel-based microporous layer[J]. Joule, 2021, 5(7): 1776-1799 [35] 张微. 制氢技术进展及经济性分析[J]. 当代石油石化, 2022, 30(7):31-36 ZHANG Wei. The progress and economic analysis of hydrogen production technology[J]. Petroleum & Petrochemical Today, 2022, 30(7): 31-36(in Chinese) [36] 牟树君, 林今, 邢学韬, 等. 高温固体氧化物电解水制氢储能技术及应用展望[J]. 电网技术, 2017, 41(10): 3385-3391 MOU Shujun, LIN Jin, XING Xuetao, et al. Technology and application prospect of high-temperature solid oxide electrolysis cell[J]. Power System Technology, 2017, 41(10): 3385-3391(in Chinese) [37] 张文强, 于波. 高温固体氧化物电解制氢技术发展现状与展望[J]. 电化学, 2020, 26(2): 212-229 ZHANG Wenqiang, YU Bo. Development status and prospects of hydrogen production by high temperature solid oxide electrolysis[J]. Journal of Electrochemistry, 2020, 26(2): 212-229(in Chinese) [38] HEBLING C, RAGWITZ M, FLEITER T, et al. A hydrogen roadmap for Germany[J]. Fraunhofer ISI & ISE, Karlsruhe and Freiburg, 2019 [39] SI D, XIONG B, CHEN L, et al. Highly selective and efficient electrocatalytic synthesis of glycolic acid in coupling with hydrogen evolution[J]. Chem Catalysis, 2021, 1(4): 941-955 [40] WANG T, TAO L, ZHU X, et al. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction[J]. Nature Catalysis, 2022, 5(1): 66-73
|