[1] 马涛, 刘九夫, 彭安帮, 等. 中国非常规水资源开发利用进展[J]. 水科学进展, 2020, 31(6): 960-969 MA Tao, LIU Jiufu, PENG Anbang, et al. Progress in development and utilization of non-conventional water resources in China[J]. Advances in Water Science, 2020, 31(6): 960-969(in Chinese) [2] 张春园, 赵勇. 实施污水资源化是保障国家高质量发展的需要[J]. 中国水利, 2020(1): 1-4 ZHANG Chunyuan, ZHAO Yong. The implementation of wastewater reuse is the need to ensure the high quality development of China[J]. China Water Resources, 2020(1): 1-4(in Chinese) [3] BAO C, HE D. Scenario modeling of urbanization development and water scarcity based on system dynamics: A case study of Beijing-Tianjin-Hebei urban agglomeration, China[J]. International Journal of Environmental Research and Public Health, 2019, doi: 10.3390/ijerph16203834 [4] GREENLEE L F, LAWLER D F, FREEMAN B D, et al. Reverse osmosis desalination: Water sources, technology, and today’s challenges[J]. Water Research, 2009, 43(9): 2317-2348 [5] MALAEB L, AYOUB G M. Reverse osmosis technology for water treatment: State of the art review[J]. Desalination, 2011, 267(1): 1-8 [6] NG H, LEE L, ONG S L, et al. Treatment of RO brine-towards sustainable water reclamation practice[J]. Water Science and Technology, 2008, 58(4): 931-936 [7] DIALYNAS E, MANTZAVINOS D, DIAMADOPOULOS E. Advanced treatment of the reverse osmosis concentrate produced during reclamation of municipal wastewater[J]. Water Research, 2008, 42(18): 4603-4608 [8] 李瑞峰, 于守政, 李治刚. 双膜法在污水再生处理中的应用及运行维护[J]. 工业用水与废水, 2020, 51(5): 65-68 LI Ruifeng, YU Shouzheng, LI Zhigang. Application and operating maintenance of double membrane in sewage regeneration treatment[J]. Industrial Water & Wastewater, 2020, 51(5): 65-68(in Chinese) [9] CHELME-AYALA P, SMITH D W, EL-DIN M G. Membrane concentrate management options: A comprehensive critical review[J]. Canadian Journal of Civil Engineering, 2009, 36(6): 1107-1119 [10] 蒋咏, 高顶学, 毛学文, 等. 基于PARAFAC分析的西藏昌都大骨节病地区水体腐殖质性质研究[J]. 北京大学学报(自然科学版), 2019, 55(4): 717-726 JIANG Yong, GAO Dingxue, MAO Xuewen, et al. Characteristics of humic substances in KBD-affected region of Changdu, Tibet based on PARAFAC of fluorescence[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(4): 717-726(in Chinese) [11] 郝晓地, 周鹏, 曹亚莉. 污水处理中腐殖质的来源及其演变过程[J]. 环境工程学报, 2017, 11(1): 1-11 HAO Xiaodi, ZHOU Peng, CAO Yali. Origins and evolution processes of humic substances in wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2017, 11(1): 1-11(in Chinese) [12] GRINHUT T, HADAR Y, CHEN Y. Degradation and transformation of humic substances by saprotrophic fungi: Processes and mechanisms[J]. Fungal Biology Reviews, 2007, 21(4): 179-189 [13] BARTOSZEK M, POLAK J, SUŁKOWSKI W W. NMR study of the humification process during sewage sludge treatment[J]. Chemosphere, 2008, 73(9): 1465-1470 [14] SOH Y N A, KUNACHEVA C, WEBSTER R D, et al. Identification of the production and biotransformational changes of soluble microbial products (SMP) in wastewater treatment processes: A short review[J]. Chemosphere, 2020, doi:10.1016/j.chemosphere.2020.126391 [15] 刘锐, 黄霞, 范彬, 等. 膜-生物反应器中溶解性微生物产物的研究进展[J]. 环境污染治理技术与设备, 2002(1): 1-7 LIU Rui, HUANG Xia, FAN Bin, et al. Progress of studies on soluble microbial products in a membrane bioreactor[J]. Technigues and Equipment for Enviropollcont, 2002(1): 1-7(in Chinese) [16] YU H, QU F, SUN L, et al. Relationship between soluble microbial products (SMP) and effluent organic matter (EfOM): Characterized by fluorescence excitation emission matrix coupled with parallel factor analysis[J]. Chemosphere, 2015, 121: 101-109 [17] SHENG G, YU H. Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy[J]. Water Research, 2006, 40(6): 1233-1239 [18] REBHUN M, MANKA J. Classification of organics in secondary effluents[J]. Environmental Science & Technology, 1971, 5(7): 606-609 [19] LY Q V, NGHIEM L D, SIBAG M, et al. Effects of COD/N ratio on soluble microbial products in effluent from sequencing batch reactors and subsequent membrane fouling[J]. Water Research, 2018, 134: 13-21 [20] NI B, ZENG R, FANG F, et al. Fractionating soluble microbial products in the activated sludge process[J]. Water Research, 2010, 44(7): 2292-2302 [21] 汪琪, 张梦佳, 陈洪斌. 水环境中药物类PPCPs的赋存及处理技术进展[J]. 净水技术, 2020, 39(1): 43-51 WANG Qi, ZHANG Mengjia, CHEN Hongbin. Review on occurrence and treatment technology of PPCPs in water environment[J]. Water Purification Technology, 2020, 39(1): 43-51(in Chinese) [22] MONTES-GRAJALES D, FENNIX-AGUDELO M, MIRANDA-CASTRO W. Occurrence of personal care products as emerging chemicals of concern in water resources: A review[J]. Science of the Total Environment, 2017, 595: 601-614 [23] ZHOU R, LU G, YAN Z, et al. A review of the influences of microplastics on toxicity and transgenerational effects of pharmaceutical and personal care products in aquatic environment[J]. Science of the Total Environment, 2020, 10.1016/j.scitotenv.2020.139222 [24] CIZMAS L, SHARMA V K, GRAY C M, et al. Pharmaceuticals and personal care products in waters: Occurrence, toxicity, and risk[J]. Environmental Chemistry Letters, 2015, 13(4): 381-394 [25] CHAVES R S, GUERREIRO C S, CARDOSO V V, et al. Hazard and mode of action of disinfection by-products (DBPs) in water for human consumption: Evidences and research priorities[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2019, 223: 53-61 [26] 张雅晶. 污水再生过程中的消毒副产物前体物的变化规律及去除效果研究[D]. 江苏无锡: 江南大学, 2018 ZHANG Yajing. Research on the variation and removal of disinfection by-product precursors during the wastewater reuse[D]. Jiangsu Wuxi: Jiangnan University, 2018 (in Chinese) [27] 韩慧慧, 缪恒锋, 张雅晶, 等. 污水再生过程中消毒副产物前体物转化规律[J]. 环境科学, 2017, 38(7): 2883-2892 HAN Huihui, MIAO Hengfeng, ZHANG Yajing, et al. Transformation of disinfection byproduct precursors during the wastewater regeneration processes[J]. Environmental Science, 2017, 38(7): 2883-2892(in Chinese) [28] ZHAI H, HE X, ZHANG Y, et al. Disinfection byproduct formation in drinking water sources: A case study of Yuqiao reservoir[J]. Chemosphere, 2017, 181: 224-231 [29] TANG F, HU H, WU Q, et al. Effects of chemical agent injections on genotoxicity of wastewater in a microfiltration-reverse osmosis membrane process for wastewater reuse[J]. Journal of Hazardous Materials, 2013, 260: 231-237 [30] PÉREZ G, FERNÁNDEZ-ALBA A R, URTIAGA A M, et al. Electro-oxidation of reverse osmosis concentrates generated in tertiary water treatment[J]. Water Research, 2010, 44(9): 2763-2772 [31] LEE M Y, WANG W, DU Y, et al. Applications of UV/H2O2, UV/persulfate, and UV/persulfate/Cu2+ for the elimination of reverse osmosis concentrate generated from municipal wastewater reclamation treatment plant: Toxicity, transformation products, and disinfection byproducts[J]. Science of the Total Environment, 2021, doi:10.1016/j.scitotenv.2020.144161 [32] UMAR M, RODDICK F, FAN L H. Impact of coagulation as a pre-treatment for UVC/H2O2-biological activated carbon treatment of a municipal wastewater reverse osmosis concentrate[J]. Water Research, 2016, 88: 12-19 [33] BAGASTYO A Y, KELLER J, POUSSADE Y, et al. Characterisation and removal of recalcitrants in reverse osmosis concentrates from water reclamation plants[J]. Water Research, 2011, 45(7): 2415-2427 [34] KING J F, SZCZUKA A, ZHANG Z, et al. Efficacy of ozone for removal of pesticides, metals and indicator virus from reverse osmosis concentrates generated during potable reuse of municipal wastewaters[J]. Water Research, 2020, doi:10.1016/j.watres.2020.115744 [35] XU X, XIA Z, LI L, et al. Catalytic ozonation of organics in reverse osmosis concentrate with catalysts based on activated carbon[J]. Molecules (Basel, Switzerland), 2019, doi:10.3390/molecules24234365 [36] ZHOU T, LIM T, CHIN S, et al. Treatment of organics in reverse osmosis concentrate from a municipal wastewater reclamation plant: Feasibility test of advanced oxidation processes with/without pretreatment[J]. Chemical Engineering Journal, 2011, 166(3): 932-939 [37] KIM D H, PARK S, YOON Y, et al. Removal of total dissolved solids from reverse osmosis concentrates from a municipal wastewater reclamation plant by aerobic granular sludge[J]. Water, 2018, doi: 10.3390/w10070882 [38] PRADHAN S, FAN L H, RODDICK F A, et al. A comparative study of biological activated carbon based treatments on two different types of municipal reverse osmosis concentrates[J]. Chemosphere, 2020, doi:10.1016/j.chemosphere.2019.124925 [39] QUAN X, HUANG K, LI M, et al. Nitrogen removal performance of municipal reverse osmosis concentrate with low C/N ratio by membrane-aerated biofilm reactor[J]. Frontiers of Environmental Science & Engineering, 2018, 12(6): 1-11 [40] EKANAYAKE D, ARYAL R, HASAN JOHIR M A, et al. Interrelationship among the pollutants in stormwater in an urban catchment and first flush identification using UV spectroscopy[J]. Chemosphere, 2019, 233: 245-251 [41] 尹莉, 乔丽丽, 贾琰, 等. 固定化微生物技术深度处理二级反渗透浓水研究[J]. 水处理技术, 2017, 43(2): 90-93 YIN Li, QIAO Lili, JIA Yan, et al. Advanced treatment of the secondary reverse osmosis concentrate by immobilized microorganism technology[J]. Technology of Water Treatment, 2017, 43(2): 90-93(in Chinese) [42] 赵春霞, 顾平, 张光辉. 反渗透浓水处理现状与研究进展[J]. 中国给水排水, 2009, 25(18): 1-5 ZHAO Chunxia, GU Ping, ZHANG Guanghui. Current status and research development of reverse osmosis concentrate treatment[J]. China Water & Wastewater, 2009, 25(18): 1-5(in Chinese) [43] 孙迎雪, 胡洪营, 高岳, 等. 城市污水再生处理反渗透系统RO浓水处理方式分析[J]. 给水排水, 2014, 50(7): 36-42 SUN Yingxue, HU Hongying, GAO Yue, et al. Investigation of treatment pattern for concentrated wastewater from the municipal wastewater reclamation reverse osmosis system[J]. Water & Wastewater Engineering, 2014, 50(7): 36-42(in Chinese) [44] 全学军, 徐云兰, 程治良. 难降解废水高级氧化技术[M]. 北京: 化学工业出版社, 2019 [45] 邢璇. 电化学水处理应用技术研究[M]. 北京: 中央民族大学出版社, 2018 [46] HAO Y, MA H, WANG Q, et al. Refractory DOM in industrial wastewater: Formation and selective oxidation of AOPs[J]. Chemical Engineering Journal, 2021, doi:10.1016/j.cej.2020.126857 [47] CHEN M, ZHAO X, WANG C, et al. Electrochemical oxidation of reverse osmosis concentrates using macroporous Ti-ENTA/SnO2-Sb flow-through anode: Degradation performance, energy efficiency and toxicity assessment[J]. Journal of Hazardous Materials, 2021, doi: 10.1016/j.jhazmat.2020.123295 [48] 徐新华, 赵伟荣. 水与废水的臭氧处理[M]. 北京: 化学工业出版社, 2003 [49] LEE L Y, NG H Y, ONG S L, et al. Ozone-biological activated carbon as a pretreatment process for reverse osmosis brine treatment and recovery[J]. Water Research, 2009, 43(16): 3948-3955 [50] 陈琳, 杜瑛珣, 雷乐成. UV/H2O2光化学氧化降解对氯苯酚废水的反应动力学[J]. 环境科学, 2003, 24(5): 106-109 CHEN Lin, DU Yingxun, LEI Lecheng. Kinetics of P-chlorophenol wastewater treatment by UV/H2O2 oxidation[J]. Environmental Science, 2003, 24(5): 106-109(in Chinese) [51] 冯欣欣, 杜尔登, 郭迎庆, 等. UV/H2O2降解羟苯甲酮反应动力学及影响因素[J]. 环境科学, 2015, 36(6): 2129-2137 FENG Xinxin, DU Erdeng, GUO Yingqing, et al. Degradation of organic sunscreens 2-hydroxy-4-methoxybenzophenone by UV/H2O2 process: Kinetics and factors[J]. Environmental Science, 2015, 36(6): 2129-2137(in Chinese) [52] LEE M Y, WANG W, DU Y, et al. Comparison of UV/H2O2 and UV/PS processes for the treatment of reverse osmosis concentrate from municipal wastewater reclamation[J]. Chemical Engineering Journal, 2020, doi:10.1016/j.cej.2020.124260 [53] URBINA-SUAREZ N A, MACHUCA-MARTÍNEZ F, BARAJAS-SOLANO A F. Advanced oxidation processes and biotechnological alternatives for the treatment of tannery wastewater[J]. Molecules (Basel, Switzerland), 2021, doi:10.3390/molecules26113222 [54] ZHAO K, ZHAO G, LI P, et al. A novel method for photodegradation of high-chroma dye wastewater via electrochemical pre-oxidation[J]. Chemosphere, 2010, 80(4): 410-415 [55] TANG S, XU L, YU X, et al. Degradation of anticancer drug capecitabine in aquatic media by three advanced oxidation processes: Mechanisms, toxicity changes and energy cost evaluation[J]. Chemical Engineering Journal, 2021, doi:10.1016/j.cej.2020.127489 [56] LI L, ZHU W, ZHANG P, et al. Comparison of AC/O-3BAC and O-3BAC processes for removing organic pollutants in secondary effluent[J]. Chemosphere, 2006, 62(9): 1514-1522 [57] 邝江濛. 两种典型PPCPs的臭氧氧化降解及机理研究[D]. 北京: 清华大学, 2013 KUANG Jiangmeng. Ozonation and its mechanism of two typical PPCPs[D]. Beijing: Tsinghua University, 2013 (in Chinese) [58] 吴桐. 反硝化MBBR处理低压反渗透浓水深度脱氮研究[D]. 西安: 长安大学, 2019 WU Tong. Study on the advanced nitrogen removal of denitrification MBBRs for treatment of low pressure reverse osmosis concentrate[D]. Xi’an: Changan University, 2019 (in Chinese) [59] ZHANG Z, KING J F, SZCZUKA A, et al. Pilot-scale ozone/biological activated carbon treatment of reverse osmosis concentrate: Potential for synergism between nitrate and contaminant removal and potable reuse[J]. Environmental Science: Water Research & Technology, 2020, 6(5): 1421-1431 [60] JAMIL S, LOGANATHAN P, LISTOWSKI A, et al. Simultaneous removal of natural organic matter and micro-organic pollutants from reverse osmosis concentrate using granular activated carbon[J]. Water Research, 2019, 155: 106-114 [61] JAMIL S, LOGANATHAN P, KANDASAMY J, et al. Removal of dissolved organic matter fractions from reverse osmosis concentrate: Comparing granular activated carbon and ion exchange resin adsorbents[J]. Journal of Environmental Chemical Engineering, 2019, doi:10.1016/j.jece.2019.103126 [62] PÉREZ-GONZÁLEZ A, URTIAGA A M, IBÁÑEZ R, et al. State of the art and review on the treatment technologies of water reverse osmosis concentrates[J]. Water Research, 2012, 46(2): 267-283 [63] ZHANG Y, VAN DER BRUGGEN B, PINOY L, et al. Separation of nutrient ions and organic compounds from salts in RO concentrates by standard and monovalent selective ion-exchange membranes used in electrodialysis[J]. Journal of Membrane Science, 2009, 332(1/2): 104-112
|