[1] Fonte P, Araújo F, Reis S, et al. Oral insulin delivery:How far are we?[J]. Journal of Diabetes Science and Technology, 2013, 7(2):520-531
[2] Choonara B F, Choonara Y E, Kumar P, et al. A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules[J]. Biotechnology Advances, 2014, 32(7):1269-1282
[3] Grassin-Delyle S, Buenestado A, Naline E, et al. Intranasal drug delivery:An efficient and non-invasive route for systemic administration:Focus on opioids[J]. Pharmacology & Therapeutics, 2012, 134(3):366-379
[4] Walters K A. Transdermal drug delivery[M]//Walters K A. eds. Routes of Drug Administration. Elsevier, 1990:78-136. doi:10.1016/b978-0-7236-0922-3.50009-2
[5] Patel V F, Liu F, Brown M B. Advances in oral transmucosal drug delivery[J]. Journal of Controlled Release, 2011, 153(2):106-116
[6] Renukuntla J, Vadlapudi A D, Patel A, et al. Approaches for enhancing oral bioavailability of peptides and proteins[J]. International Journal of Pharmaceutics, 2013, 447(1):75-93
[7] Ibraheem D, Elaissari A, Fessi H. Administration strategies for proteins and peptides[J]. International Journal of Pharmaceutics, 2014, 477(1):578-589
[8] Chaturvedi K, Ganguly K, Nadagouda M N, et al. Polymeric hydrogels for oral insulin delivery[J]. Journal of Controlled Release, 2013, 165(2):129-138
[9] Hamman J H, Enslin G M, Kotzé A F. Oral delivery of peptide drugs[J]. Bio Drugs, 2005, 19(3):165-177
[10] Zhang Y, Chan H F, Leong K W. Advanced materials and processing for drug delivery:The past and the future[J]. Advanced Drug Delivery Reviews, 2013, 65(1):104-120
[11] Shen L. Tight junctions on the move:Molecular mechanisms for epithelial barrier regulation[J]. Annals of the New York Academy of Sciences, 2012, 1258(1):9-18
[12] Plapied L, Duhem N, des Rieux A, et al. Fate of polymeric nanocarriers for oral drug delivery[J]. Current Opinion in Colloid & Interface Science, 2011, 16(3):228-237
[13] Adson A, Burton P S, Raub T J, et al. Passive diffusion of weak organic electrolytes across Caco-2 cell monolayers:Uncoupling the contributions of hydrodynamic, transcellular, and paracellular barriers[J]. Journal of Pharmaceutical Sciences, 1995, 84(10):1197-1204
[14] Chen M C, Sonaje K, Chen K J, et al. A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery[J]. Biomaterials, 2011, 32(36):9826-9838
[15] Koziolek M, Grimm M, Becker D, et al. Investigation of pH and temperature profiles in the GI tract of fasted human subjects using the Intellicap system[J]. Journal of Pharmaceutical Sciences, 2015, 104(9):2855-2863
[16] Su F, Lin K, Sonaje K, et al. Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery[J]. Biomaterials, 2012, 33(9):2801-2811
[17] 张廷华. 生物化学[M]. 重庆:西南科技大学出版社, 2006
[18] Du Z, Tang C, Guan Y, et al. Bioactive insulin microparticles produced by supercritical fluid assisted atomization with an enhanced mixer[J]. International Journal of Pharmaceutics, 2013, 454(1):174-182
[19] Ibie C, Knott R, Thompson C J. In-Vitro evaluation of the effect of polymer structure on uptake of novel polymer-insulin polyelectrolyte complexes by human epithelial cells[J]. International Journal of Pharmaceutics, 2015, 479(1):103-117
[20] Pappenheimer J R. Physiological regulation of transepithelial impedance in the intestinal mucosa of rats and hamsters[J]. The Journal of Membrane Biology, 1987, 100(1):137-148
[21] Renukuntla J, Vadlapudi A D, Patel A, et al. Approaches for enhancing oral bioavailability of peptides and proteins[J]. International Journal of Pharmaceutics, 2013, 447(1):75-93
[22] Maher S, Mrsny R J, Brayden D J. Intestinal permeation enhancers for oral peptide delivery[J]. Advanced Drug Delivery Reviews, 2016, 106(B):277-319
[23] Lane M E, O'Driscoll C M, Corrigan O I. Quantitative estimation of the effects of bile salt surfactant systems on insulin stability and permeability in the rat intestine using a mass balance model[J]. Journal of Pharmacy and Pharmacology, 2005, 57(2):169-175
[24] Dorkoosh F. Feasibility study on the retention of superporous hydrogel composite polymer in the intestinal tract of man using scintigraphy[J]. Journal of Controlled Release, 2004, 99(2):199-206
[25] Lamprecht A, Saumet J L, Roux J, et al. Lipid nanocarriers as drug delivery system for ibuprofen in pain treatment[J]. International Journal of Pharmaceutics, 2004, 278(2):407-414
[26] Suchaoin W, Bonengel S, Grießinger J A, et al. Novel bioadhesive polymers as intra-articular agents:Chondroitin sulfate-cysteine conjugates[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 101:25-32
[27] Chen D, Xia D, Li X, et al. Comparative study of Pluronic(®) F127-modified liposomes and chitosan-modified liposomes for mucus penetration and oral absorption of cyclosporine A in rats[J]. International Journal of Pharmaceutics, 2013, 449(1):1-9
[28] Sung H W, Sonaje K, Liao Z, et al. pH-Responsive nanoparticles shelled with chitosan for oral delivery of insulin:From mechanism to therapeutic applications[J]. Accounts of Chemical Research, 2012, 45(4):619-629
[29] Vetter A, Bernkop-Schnurch A. 14 Bioadhesive delivery systems. Biodrug delivery systems:Fundamentals, applications and clinical development[M]. Boca Raton:CRC Press, 2016
[30] Lin Y, Mi F, Chen C, et al. Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery[J]. Biomacromolecules, 2007, 8(1):146-152
[31] Sonaje K, Lin K, Wang J, et al. Self-Assembled pH-sensitive nanoparticles:A platform for oral delivery of protein drugs[J]. Advanced Functional Materials, 2010, 20(21):3695-3700
[32] Yamamoto A, Taniguchi T, Rikyuu K, et al. Effects of various protease inhibitors on the intestinal absorption and degradation of insulin in rats[J]. Pharmaceutical Research, 1994, 11(10):1496-1500
[33] 李益. 以酸性缓冲体系作稳定剂的口服胰岛素微球的构建及对糖尿病大鼠的药效学[D]. 天津:天津大学,2015 Li Yi. Investigation on the design of insulin embedded microsphere with acidic buffer as stabilizer & its hypoglycemic effects for diabetes rats[D]. Tianjin:Tianjin University, 2015(in Chinese)
[34] des Rieux A, Fievez V, Garinot M, et al. Nanoparticles as potential oral delivery systems of proteins and vaccines:A mechanistic approach[J]. Journal of Controlled Release, 2006, 116(1):1-27
[35] Renukuntla J, Vadlapudi A D, Patel A, et al. Approaches for enhancing oral bioavailability of peptides and proteins[J]. International Journal of Pharmaceutics, 2013, 447(1):75-93
[36] Niu M, Lu Y, Hovgaard L, et al. Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats:The effect of cholate type, particle size and administered dose[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81(2):265-272
[37] Ayre A P, Pawar H A, Khutle N M, et al. Polymeric nanoparticles in drug delivery systems critical review and concepts[J]. International Journal of Pharmacy and Technology, 2014, 5:2809-2823
[38] Li H, Chen M, Su Z, et al. Size-Exclusive effect of nanostructured lipid carriers on oral drug delivery[J]. International Journal of Pharmaceutics, 2016, 511(1):524-537
[39] Yun Y, Cho Y W, Park K. Nanoparticles for oral delivery:Targeted nanoparticles with peptidic ligands for oral protein delivery[J]. Advanced Drug Delivery Reviews, 2013, 65(6):822-832
[40] Zhang N, Ping Q, Huang G, et al. Lectin-Modified solid lipid nanoparticles as carriers for oral administration of insulin[J]. International Journal of Pharmaceutics, 2006, 327(1):153-159
[41] Petrus A K, Fairchild T J, Doyle R P. Traveling the vitamin B12 pathway:Oral delivery of protein and peptide drugs[J]. Angewandte Chemie International Edition, 2009, 48(6):1022-1028
[42] Zhang X, Qi J, Lu Y, et al. Biotinylated liposomes as potential carriers for the oral delivery of insulin[J]. Nanomedicine:Nanotechnology, Biology and Medicine, 2014, 10(1):167-176
[43] Ansari M J. Oral delivery of insulin for treatment of diabetes:Classical challenges and current opportunities[J]. Journal of Medical Sciences, 2015, 15(5):209-220
[44] Shan W, Zhu X, Liu M, et al. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin[J]. ACS Nano, 2015, 9(3):2345-2356
|