[1] Massey V. The chemical and biological versatility of riboflavin[J]. Biochem Soc Trans, 2000, 28(4): 283-296
[2] Koizumi S, Yonetani Y, Maruyama A, et al. Production of riboflavin by metabolically engineered Corynebacterium ammonia genes[J]. Appl Microbiol Biotechnol, 2000, 53(6): 674-679
[3] Stahmann K P, Revuelta J L, Seulberger H. Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production[J]. Appl Microbiol Biotechnol, 2000, 53(5): 509-516
[4] Peberdy J F. Biology of industrial microorganisms[C]//Demain NAS Ed.. Biology of Penicillins. Menlo Park: Benjamin-Cummings, 1985
[5] Zhang F, Rodriguez S, Keasling J D. Metabolic engineering of microbial pathways for advanced biofuels production[J]. Curr Opin Biotechnol, 2011, 22(6): 775-783
[6] Bacher A, Eberhardt S, Fischer M, et al. Biosynthesis of vitamin b2 (riboflavin)[J]. Annu Rev Nutr, 2000, 20: 153-167
[7] Sklyarova S A, Kreneva R A, Perumov D A, et al. The characterization of internal promoters in the Bacillus subtilis riboflavin biosynthesis operon[J]. Genetika, 2012, 48(10): 967-974
[8] Mack M, van Loon A P, Hohmann H P. Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC[J]. J Bacteriol, 1998, 180(4): 950-955
[9] Kuhlman T E, Cox E C. Site-Specific chromosomal integration of large synthetic constructs[J]. Nucleic Acids Res, 2010, 38(6): e92
[10] Goswami R S. Targeted gene replacement in fungi using a split-marker approach[J]. Methods Mol Biol, 2012, 835: 255-269
[11] Bandyopadhyay D, Chatterjee A K, Datta A G. Effect of cadmium, mercury and copper on partially purified hepatic flavokinase of rat[J]. Mol Cell Biochem, 1997,167(1/2): 73-80
[12] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72: 248-254
[13] Hümbelin M, Griesser V, Keller T, et al. GTP cyclohydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase are rate-limiting enzymes in riboflavin synthesis of an industrial Bacillus subtilis strain used for riboflavin production[J]. J Ind Microbiol Biotechnol, 1999, 22(1): 1-7
|