[1] Zhong C, Cao Y, Li B, et al. Biofuels in China: Past, present and future[J]. Biofuels, Bioproducts and Biorefining, 2010, 4(3): 326-342
[2] Brethauer S, Wyman C E. Review: Continuous hydrolysis and fermentation for cellulosic ethanol production[J]. Bioresource Technology, 2010, 101(13): 4 862-4 874
[3] Talebnia F, Karakashev D, Angelidaki I. Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation[J]. Bioresource Technology, 2010, 101(13): 4 744-4 753
[4] Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund M F, et al. Bio-Ethanol:The fuel of tomorrow from the residues of today[J]. Trends in Biotechnology, 2006, 24(12): 549-556
[5] Hasunuma T, Kondo A. Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains[J]. Process Biochemistry, 2012, 47(9): 1 287-1 294
[6] Chauve M, Mathis H, Huc D, et al. Comparative kinetic analysis of two fungal β-glucosidases[J]. Biotechnology for Biofuels, 2010, 3(6):1-8
[7] Voutilainen S P, Puranen T, Siikaaho M, et al. Cloning, expression, and characterization of novel thermostable family 7 cellobiohydrolases[J]. Biotechnology and Bioengineering, 2008, 101(3): 515-528
[8] Galazka J M, Tian C, Beeson W T, et al. Cellodextrin transport in yeast for improved biofuel production[J]. Science, 2010, 330(6 000): 84-86
[9] Ha S J, Galazka J M, Kim S R, et al. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation[J]. Proceedings of the National Academy of Sciences, 2011, 108(2): 504-509
[10] Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition[J]. Bioresource Technology, 2000,74(1): 25-33
[11] Ding M, Wang X, Yang Y, et al. Comparative metabolic profiling of parental and inhibitors-tolerant yeasts during lignocellulosic ethanol fermentation[J]. Metabolomics, 2012, 8(2): 232-243
[12] Parawira W, Tekere M. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: Review[J]. Critical reviews in Biotechnology, 2011, 31(1): 20-31
[13] Palmqvist E, Grage H, Meinander N Q, et al. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts[J]. Biotechnology and Bioengineering, 1999, 63(1): 46-55
[14] Palmqvist E, Almeida J S, Hahn-Hägerdal B. Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture[J]. Biotechnology and Bioengineering, 1999, 62(4): 447-454
[15] Almeida J R, Modig T, Petersson A, et al. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae[J]. Journal of Chemical Technology and Biotechnology, 2007, 82(4): 340-349
[16] Liu Z. Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors[J]. Applied Microbiology and Biotechnology, 2006, 73(1): 27-36
[17] Allen S A, Clark W, McCaffery J M, et al. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae[J]. Biotechnology for Biofuels, 2010, 3(2): 1-10
[18] Klinke H B, Thomsen A, Ahring B K. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass[J]. Applied Microbiology and Biotechnology, 2004, 66(1): 10-26
[19] Keweloh H, Weyrauch G, Rehm H J. Phenol-Induced membrane changes in free and immobilized Escherichia coli[J]. Applied Microbiology and Biotechnology, 1990, 33(1): 66-71
[20] Larsson S, Palmqvist E, Hahn-Hägerdal B, et al. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood[J]. Enzyme and Microbial Technology, 1999, 24(3): 151-159
[21] Russell J B, Diez-Gonzalez F. The effects of fermentation acids on bacterial growth[J]. Advances in Microbial Physiology, 1997, 39: 205-234
[22] Kim H, Lee W H, Galazka J M, et al. Analysis of cellodextrin transporters from Neurospora crassa in Saccharomyces cerevisiae for cellobiose fermentation[J]. Applied Microbiology and Biotechnology, 2014, 98(3): 1 087-1 094
[23] Spiro S, Guest J R. Adaptive responses to oxygen limitation in Escherichia coli[J]. Trends in Biochemical Sciences, 1991, 16(8): 310-314
[24] Lian J, Li Y, Hamedirad M, et al. Directed evolution of a cellodextrin transporter for improved biofuel production under anaerobic conditions in Saccharomyces cerevisiae[J]. Biotechnology & Bioengineering, 2014, 111(8):1 521-1 531
[25] Ha S J, Galazka J M, Joong O E, et al. Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters[J]. Metabolic Engineering, 2013, 15:134-143
[26] Martinez A, Rodriguez M E, Wells M L, et al. Detoxification of dilute acid hydrolysates of lignocellulose with lime[J]. Biotechnology Progress, 2001, 17(2): 287-293
|