[1] |
鲍晓明, 高东, 曲音波, 等. 木糖代谢基因表达水平对酿酒酵母重组菌株产物形成的影响[J]. 生物工程学报, 1997, 13(4): 355-361 Bao Xiaoming, Gao Dong, Qu Yinbo, et al. Effect on product formation in recombinant Saccharomyces cerevisiae strains expressing different levels of xylose metabolic genes[J]. Chinese Journal of Biotechnology, 1997, 13(4): 355-361(in Chinese) |
[2] |
沈煜, 郑华军, 王颖, 等. 木酮糖激酶表达水平对酿酒酵母木糖代谢产物流向的影响[J].生物化学与生物物理进展.2004, 31(8):746-751 |
[3] |
Blank L M, Lehmbeck F, Sauer U. Metabolic-Flux and network analysis in fourteen hemiascomycetous yeasts [J].Fems Yeast Res.2005, 5(6/7):545-558 |
[4] |
Klimacek M, Krahulec S, Sauer U, et al. Limitations in xylose-fermenting Saccharomyces cerevisiae, made evident through comprehensive metabolite profiling and thermodynamic analysis[J]. Applied and Environmental Microbiology, 2010, 76(22): 7 566-7 574 |
[5] |
Walfridsson M, Hallborn J, Penttil M, et al. Xylose-Metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase[J]. Applied and Environmental Microbiology, 1995, 61(12): 4 184-4 190 |
[6] |
Ktter P, Ciriacy M. Xylose fermentation by Saccharomyces cerevisiae[J].Applied Microbiology and Biotechnology.1993, 38(6):776-783 |
[7] |
Senac T, Hahn H, Gerdal B. Effects of increased transaldolase activity on D-xylulose and D-glucose metabolism in Saccharomyces cerevisiae cell extracts [J]. Applied and Environmental Microbiology, 1991, 57(6): 1 701-1 706 |
[8] |
Schaaff-Gerstenschl Ger I, Miosga T, Zimmermann F K. Genetics of pentose-phosphate pathway enzymes in Saccharomyces cerevisiae[J].Bioresource Technology.1994, 50(1):59-64 |
[9] |
Hasunuma T, Sanda T, Yamada R, et al. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae [J].Microbial Cell Factories.2011, 10(1):2-14 |
[10] |
Miosga T, Zimmermann F K. Cloning and characterization of the first two genes of the non-oxidative part of the Saccharomyces cerevisiae pentose-phosphate pathway [J].Current Genetics.1996, 30(5):404-409 |
[11] |
Karhumaa K, Fromanger R, Hahn-H Gerdal B, et al. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae [J]. Applied Microbiology and Biotechnology, 2007, 73(5): 1 039-1 046 |
[12] |
Bera A K, Ho N W, Khan A, et al. A genetic overhaul of Saccharomyces cerevisiae 424A (LNH-ST) to improve xylose fermentation[J].Journal of Industrial Microbiology & Biotechnology.2011, 38(5):617-626 |
[13] |
Thomas B J, Rothstein R. Elevated recombination rates in transcriptionally active DNA[J].Cell.1989, 56(4):619-630 |
[14] |
Kong Q, Gu J, Cao L, et al. Improved production of ethanol by deleting FPS1 and over-expressing GLT1 in Saccharomyces cerevisiae[J]. Biotechnology Letter, 2006, 28: 2 033-2 038 |
[15] |
Gietz R D, Sugino A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites[J].Gene.1988, 74(2):527-534 |
[16] |
Zhang G, Liu J, Ding W. Overexpression of water-forming NADH oxidase decreases xylitol formation during xylose fermentation of Saccharomyces cerevisiae [J]. Applied and Environmental Microbiology, 2011, 78(4): 1 081-1 086 |
[17] |
Parachin N S, Bergdahl B, Van Niel E W, et al. Kinetic modeling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae[J].Metabolic Engineering.2011, 13(5):508-517 |
[18] |
Johansson B, Hahn-H Gerdal B. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001 [J]. Fems Yeast Research, 2002, 2(3): 277-282 |
[19] |
Peng B, Shen Y, Li X, et al. Improvement of xylose fermentation in respiratory-deficient xylose fermenting Saccharomyces cerevisiae [J].Metabolic Engineering.2012, 14:9-18 |
|