[1] 赖超凤, 李爽, 彭丽丽, 等. 漆酶及其在有机合成中应用的研究进展[J]. 化工进展, 2010, 29(7): 1300-1308 LAI Chaofeng, LI Shuang, PENG Lili, et al. Progress of applications of laccase in organic synthesis[J]. Chemical Industry and Engineering Progress, 2010, 29(7): 1300-1308(in Chinese)
[2] 徐鑫, 张国庆, 胡渤洋, 等. 真菌漆酶及其介体系统: 来源、机理与应用[J]. 生物技术进展, 2020, 10(1): 30-39 XU Xin, ZHANG Guoqing, HU Boyang, et al. Fungal laccases and their mediator systems: Sources, mechanisms and applications[J]. Current Biotechnology, 2020, 10(1): 30-39(in Chinese)
[3] CAÑAS A I, CAMARERO S. Laccases and their natural mediators: Biotechnological tools for sustainable eco-friendly processes[J]. Biotechnology Advances, 2010, 28(6): 694-705
[4] 龚睿, 孙凯, 谢道月. 真菌漆酶在绿色化学中的研究进展[J]. 生物技术通报, 2018, 34(4): 24-34 GONG Rui, SUN Kai, XIE Daoyue. Applications of fungal laccase in green chemistry[J]. Biotechnology Bulletin, 2018, 34(4): 24-34(in Chinese)
[5] WEI M, LEE J, XIA F, et al. Chemical design of nanozymes for biomedical applications[J]. Acta Biomaterialia, 2021, 126: 15-30
[6] WU J, WANG X, WANG Q, et al. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II)[J]. Chemical Society Reviews, 2019, 48(4): 1004-1076
[7] LIANG H, LIN F, ZHANG Z, et al. Multicopper laccase mimicking nanozymes with nucleotides as ligands[J]. ACS Applied Materials & Interfaces, 2017, 9(2): 1352-1360
[8] WANG Y, HE C, LI W, et al. Catalytic performance of oligonucleotide-templated Pt nanozyme evaluated by laccase substrates[J]. Catalysis Letters, 2017, 147(8): 2144-2152
[9] XU H, YAN N, QU Z, et al. Gaseous heterogeneous catalytic reactions over Mn-based oxides for environmental applications: A critical review[J]. Environmental Science & Technology, 2017, 51(16): 8879-8892
[10] DURÁN F G, BARBERO B P, CADÚS L E, et al. Manganese and iron oxides as combustion catalysts of volatile organic compounds[J]. Applied Catalysis B: Environmental, 2009, 92(1/2): 194-201
[11] MARTIN S T. Precipitation and dissolution of iron and manganese oxides[J]. Environmental Catalysis, 2005, 1: 61-82
[12] ZHANG H, WEBER E J. Identifying indicators of reactivity for chemical reductants in sediments[J]. Environmental Science & Technology, 2013, 47(13): 6959-6968
[13] KIM S C, SHIM W G. Catalytic combustion of VOCs over a series of manganese oxide catalysts[J]. Applied Catalysis B: Environmental, 2010, 98(3/4): 180-185
[14] LI X, ZHOU L, GAO J, et al. Synthesis of Mn3O4 nanoparticles and their catalytic applications in hydrocarbon oxidation[J]. Powder Technology, 2009, 190(3): 324-326
[15] SINGH M, KAUR M, SANGHA M K, et al. Comparative evaluation of manganese oxide and its graphene oxide nanocomposite as polyphenol oxidase mimics[J]. Materials Today Communications, 2021, 27: 102237
[16] WANG X, LIU J, QU R, et al. The laccase-like reactivity of manganese oxide nanomaterials for pollutant conversion: Rate analysis and cyclic voltammetry[J]. Scientific Reports, 2017, 7: 7756
[17] 崔国星, 朱建伟, 张启卫. 硫酸锰氧化法制备Mn3O4的研究[J]. 矿冶工程, 2008, 28(4): 72-76 CUI Guoxing, ZHU Jianwei, ZHANG Qiwei. Study of preparation of manganic manganous oxide from manganese sulfate by oxidation[J]. Mining and Metallurgical Engineering, 2008, 28(4): 72-76(in Chinese)
[18] GE Z, WU B, SUN T, et al. Laccase-like nanozymes fabricated by copper and tannic acid for removing malachite green from aqueous solution[J]. Colloid and Polymer Science, 2021, 299(10): 1533-1542
[19] 钟平方, 彭惠民, 彭方毅, 等. 漆酶催化酚类、苯胺类化合物的动力学分析及其测定废水中邻苯二酚的应用研究[J]. 环境科学, 2010, 31(11): 2673-2677 ZHONG Pingfang, PENG Huimin, PENG Fangyi, et al. Kinetic analysis of laccase catalyze phenolic and aniline compounds and detecting catechol in wastewater[J]. Environmental Science, 2010, 31(11): 2673-2677(in Chinese)
[20] 卢蓉, 夏黎明. 漆酶氧化还原介质系统的作用机理及其应用[J]. 纤维素科学与技术, 2004, 12(1): 37-44 LU Rong, XIA Liming. Advances in research and application of laccase mediator system[J]. Journal of Cellulose Science and Technology, 2004, 12(1): 37-44(in Chinese)
[21] ANDREU G, VIDAL T. Laccase from Pycnoporus cinnabarinus and phenolic compounds: Can the efficiency of an enzyme mediator for delignifying kenaf pulp be predicted?[J]. Bioresource Technology, 2013, 131: 536-540
[22] LI Y, QU J, GAO F, et al. In situ fabrication of Mn3O4 decorated graphene oxide as a synergistic catalyst for degradation of methylene blue[J]. Applied Catalysis B: Environmental, 2015, 162: 268-274
[23] REMUCAL C K, GINDER-VOGEL M. A critical review of the reactivity of manganese oxides with organic contaminants[J]. Environmental Science Processes & Impacts, 2014, 16(6): 1247-1266
[24] XIE T, DYRSSEN D. Simultaneous determination of partition coefficients and acidity constants of chlorinated phenols and gualacols by gas chromatography[J]. Analytica Chimica Acta, 1984, 160: 21-30
[25] LIN K, LIU W, GANT J. Oxidative removal of bisphenol A by manganese dioxide: Efficacy, products, and pathways[J]. Environmental Science & Technology, 2009, 43(10): 3860-3864
[26] 孔晓燕, 林坤德. 漆酶催化转化溴酚类化合物的动力学研究[J]. 浙江工业大学学报, 2014, 42(3): 344-348 KONG Xiaoyan, LIN Kunde. Transformation kinetics of bromophenols by laccase[J]. Journal of Zhejiang University of Technology, 2014, 42(3): 344-348(in Chinese)
[27] 胡平平, 付时雨. 漆酶催化活性中心结构及其特性研究进展[J]. 林产化学与工业, 2001, 21(3): 69-75 HU Pingping, FU Shiyu. Advances in the studies on structure of catalytic active site and characteristics of laccase[J]. Chemistry & Industry of Forest Products, 2001, 21(3): 69-75(in Chinese)
[28] CANTARELLA G, GALLI C, GENTILI P. Free radical versus electron-transfer routes of oxidation of hydrocarbons by laccase/mediator systems[J]. Journal of Molecular Catalysis B: Enzymatic, 2003, 22(3/4): 135-144
[29] 谢道月, 刘琦, 汪珺, 等. MnO2纳米酶催化ABTS的显色反应及其在Fe2+和Pb2+检测中的应用[J]. 环境化学, 2019, 38(12): 2843-2850 XIE Daoyue, LIU Qi, WANG Jun, et al. Chromogenic reaction of ABTS catalyzed by MnO2 nanozyae and its application in the visual detection of Fe2+ and Pb2+[J]. Environmental Chemistry, 2019, 38(12): 2843-2850(in Chinese)
[30] DADIGALA R, BANDI R, ALLE M, et al. Effective fabrication of cellulose nanofibrils supported Pd nanoparticles as a novel nanozyme with peroxidase and oxidase-like activities for efficient dye degradation[J]. Journal of Hazardous Materials, 2022, 436: 129165
|