[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669
[2] SUN Z, LIAO T, DOU Y, et al. Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets[J]. Nature Communications, 2014, 5: 3813
[3] ELAKKIYA R, MATHANKUMAR S, MADURAIVEERAN G. Design of transition metal oxides nanosheets for the direct electrocatalytic oxidation of glucose[J]. Materials Chemistry and Physics, 2021, 269: 124770
[4] LI H, WU J, YIN Z, et al. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets[J]. Accounts of Chemical Research, 2014, 47(4): 1067-1075
[5] TAO B, UNWIN P R, BENTLEY C L. Nanoscale variations in the electrocatalytic activity of layered transition-metal dichalcogenides[J]. The Journal of Physical Chemistry C, 2020, 124(1): 789-798
[6] LIU Z, MA R, OSADA M, et al. Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: Assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies[J]. Journal of the American Chemical Society, 2006, 128(14): 4872-4880
[7] LAYRAC G, DESTARAC M, GÉRARDIN C, et al. Highly stable layered double hydroxide colloids: A direct aqueous synthesis route from hybrid polyion complex micelles[J]. Langmuir: The ACS Journal of Surfaces and Colloids, 2014, 30(32): 9663-9671
[8] CÔTÉ A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170
[9] CAMPBELL N L, CLOWES R, RITCHIE L K, et al. Rapid microwave synthesis and purification of porous covalent organic frameworks[J]. Chemistry of Materials, 2009, 21(2): 204-206
[10] PENG Y, LI Y, BAN Y, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes[J]. Science, 2014, 346(6215): 1356-1359
[11] RODENAS T, LUZ I, PRIETO G, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation[J]. Nature Materials, 2015, 14: 48-55
[12] CASTELLANOS-GOMEZ A, VICARELLI L, PRADA E, et al. Isolation and characterization of few-layer black phosphorus[J]. 2D Materials, 2014, 1(2): 025001
[13] LIU H, DU Y, DENG Y, et al. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications[J]. Chemical Society Reviews, 2015, 44(9): 2732-2743
[14] ZHENG Y, LIU J, LIANG J, et al. Graphitic carbon nitride materials: Controllable synthesis and applications in fuel cells and photocatalysis[J]. Energy & Environmental Science, 2012, 5(5): 6717-6731
[15] GU H, ZHOU T, SHI G. Synthesis of graphene supported graphene-like C3N4 metal-free layered nanosheets for enhanced electrochemical performance and their biosensing for biomolecules[J]. Talanta, 2015, 132: 871-876
[16] NOVOSELOV K S, JIANG D, SCHEDIN F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451-10453
[17] LEI W, MOCHALIN V N, LIU D, et al. Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization[J]. Nature Communications, 2015, 6: 8849
[18] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253
[19] NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides[J]. ACS Nano, 2012, 6(2): 1322-1331
[20] STÖBER W, FINK A, BOHN E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science, 1968, 26(1): 62-69
[21] NIU D, MA Z, LI Y, et al. Synthesis of core-shell structured dual-mesoporous silica spheres with tunable pore size and controllable shell thickness[J]. Journal of the American Chemical Society, 2010, 132(43): 15144-15147
[22] CHEN Y, XU P, CHEN H, et al. Colloidal HPMO nanoparticles: Silica-etching chemistry tailoring, topological transformation, and nano-biomedical applications[J]. Advanced Materials, 2013, 25(22): 3100-3105
[23] YAMAMOTO E, UCHIDA S, SHIMOJIMA A, et al. Transformation of mesostructured silica nanoparticles into colloidal hollow nanoparticles in the presence of a bridged-organosiloxane shell[J]. Chemistry of Materials, 2018, 30(2): 540-548
[24] RU Y, EVANS D G, ZHU H, et al. Facile fabrication of yolk-shell structured porous Si-C microspheres as effective anode materials for Li-ion batteries[J]. RSC Advances, 2014, 4(1): 71-75
[25] WANG P, YANG T, SUN S, et al. Nanoengineering of yolk-shell structured silicas for click chemistry[J]. Microporous and Mesoporous Materials, 2020, 291: 109691
[26] SHAO Y, SONG J, LI X, et al. Synthesis of noble metal M@YSiO2 yolk-shell nanoparticles with thin organic/inorganic hybrid outer shells via an aqueous medium phase[J]. Langmuir: The ACS Journal of Surfaces and Colloids, 2021, 37(23): 7237-7245
[27] CHATURVEDI N, JULURI B K, HAO Q, et al. Simple fabrication of snowman-like colloids[J]. Journal of Colloid and Interface Science, 2012, 371(1): 28-33
[28] BLADÉ T, MALOSSE L, DUGUET E, et al. Synthesis of nanoscaled poly(styrene-co-n-butyl acrylate)/silica particles with dumbbell- and snowman-like morphologies by emulsion polymerization[J]. Polymer Chemistry, 2014, 5(19): 5609-5616
[29] SUN Y, LIANG F, QU X, et al. Robust reactive Janus composite particles of snowman shape[J]. Macromolecules, 2015, 48(8): 2715-2722
[30] WONORAHARDJO S, BALL G E, HOOK J, et al. 2H NMR relaxation monitoring of gelation in tetramethoxysilane sol-gels[J]. Journal of Non Crystalline Solids, 2000, 271(1): 137-146
[31] WANG J, SUGAWARA A, SHIMOJIMA A, et al. Preparation of anisotropic silica nanoparticles via controlled assembly of presynthesized spherical seeds[J]. Langmuir: The ACS Journal of Surfaces and Colloids, 2010, 26(23): 18491-18498
[32] WEI Y, ZHAO C, JIANG Y, et al. Fabrication of amphiphilic Janus silica nanospheres for Pickering emulsions[J]. Chemistry Letters, 2021, 50(6): 1293-1295
[33] YOKOI T, WAKABAYASHI J, OTSUKA Y, et al. Mechanism of formation of uniform-sized silica nanospheres catalyzed by basic amino acids[J]. Chemistry of Materials, 2009, 21(15): 3719-3729
[34] PARK J H, CHOI J Y, PARK T, et al. Structure modulation of silica microspheres in bio-inspired silicification: Effects of TEOS concentration[J]. Chemistry, an Asian Journal, 2011, 6(8): 1939-1942
[35] YANG Y, TAY B K, SUN X, et al. Photoluminescence and growth mechanism of amorphous silica nanowires by vapor phase transport[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 31(2): 218-223
[36] KUIJK A, VAN BLAADEREN A, IMHOF A. Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio[J]. Journal of the American Chemical Society, 2011, 133(8): 2346-2349
[37] SHEN D K, YANG J, LI X, et al. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres[J]. Nano Letters, 2014, 14(2): 923-932
[38] YANG S, FENG X, WANG L, et al. Graphene-based nanosheets with a sandwich structure[J]. Angewandte Chemie (International Ed in English), 2010, 49(28): 4795-4799
[39] YIN P, WANG Y, LI Y, et al. Preparation of sandwich-structured graphene/mesoporous silica composites with C8-modified pore wall for highly efficient selective enrichment of endogenous peptides for mass spectrometry analysis[J]. Proteomics, 2012, 12(18): 2784-2791
[40] YIN J, CHANG R, KAI Y, et al. Highly stable and AC electric field-activated electrorheological fluid based on mesoporous silica-coated graphene nanosheets[J]. Soft Matter, 2013, 9(15): 3910-3914
[41] SHANG L, BIAN T, ZHANG B, et al. Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: Robust catalysts for oxidation and reduction reactions[J]. Angewandte Chemie (International Ed in English), 2014, 53(1): 250-254
[42] ZHANG N, XIA M, GE C. Sandwich-like graphene-supported mesoporous silica nanosheets as sulfur hosts for highly stable lithium-sulfur batteries[J]. Journal of Alloys and Compounds, 2020, 827: 154189
[43] CUI X, LI M, WEI F, et al. Biomimetic light-activatable graphene-based nanoarchitecture for synergistic chemophotothermal therapy[J]. Chemical Engineering Journal, 2021, 420: 127710
[44] WANG Z, WANG W, COOMBS N, et al. Graphene oxide-periodic mesoporous silica sandwich nanocomposites with vertically oriented channels[J]. ACS Nano, 2010, 4(12): 7437-7450
[45] LIU Y, LI W, SHEN D, et al. Synthesis of mesoporous silica/reduced graphene oxide sandwich-like sheets with enlarged and "funneling" mesochannels[J]. Chemistry of Materials, 2015, 27(16): 5577-5586
[46] LIU R, WANG X, YE J, et al. Enhanced antibacterial activity of silver-decorated sandwich-like mesoporous silica/reduced graphene oxide nanosheets through photothermal effect[J]. Nanotechnology, 2018, 29(10): 105704
[47] XIONG L, LIU J, LI Y, et al. Enhancing corrosion protection properties of sol-gel coating by pH-responsive amino-silane functionalized graphene oxide-mesoporous silica nanosheets[J]. Progress in Organic Coatings, 2019, 135: 228-239
[48] LEE C W, ROH K C, KIM K B. A highly ordered cubic mesoporous silica/graphene nanocomposite[J]. Nanoscale, 2013, 5(20): 9604-9608
[49] DING S, LIU B, ZHANG C, et al. Amphiphilic mesoporous silica composite nanosheets[J]. Journal of Materials Chemistry, 2009, 19(21): 3443-3448
[50] KAN L Y, ZHENG B, GAO C. Graphene-templated approach to ultrathin silica nanosheets[J]. Chinese Science Bulletin, 2012, 57(23): 3026-3029
[51] XUE Y, YE Y, CHEN F, et al. A simple and controllable graphene-templated approach to synthesis 2D silica-based nanomaterials using water-in-oil microemulsions[J]. Chemical Communications, 2016, 52(3): 575-578
[52] IYAMA K, NOSE T. Kinetics of micelle formation with change of micelle shape in a dilute solution of diblock copolymers[J]. Macromolecules, 1998, 31(21): 7356-7364
[53] MANNE S, CLEVELAND J P, GAUB H E, et al. Direct visualization of surfactant hemimicelles by force microscopy of the electrical double layer[J]. Langmuir, 1994, 10(12): 4409-4413
[54] LAMONT R E, DUCKER W A. Surface-induced transformations for surfactant aggregates[J]. Journal of the American Chemical Society, 1998, 120(30): 7602-7607
[55] SHI Y, LI B, ZHU Q, et al. MXene-based mesoporous nanosheets toward superior lithium ion conductors[J]. Advanced Energy Materials, 2020, 10(9): 1903534
[56] LIANG F, SHEN K, QU X, et al. Inorganic Janus nanosheets[J]. Angewandte Chemie (International Ed in English), 2011, 50(10): 2379-2382
[57] CHEN Y, LIANG F, YANG H, et al. Janus nanosheets of polymer-inorganic layered composites[J]. Macromolecules, 2012, 45(3): 1460-1467
[58] YAN S, ZOU H, CHEN S, et al. Janus mesoporous silica nanosheets with perpendicular mesochannels: Affording highly accessible reaction interfaces for enhanced biphasic catalysis[J]. Chemical Communications, 2018, 54(74): 10455-10458
[59] YU H, WANG Q, ZHAO Y, et al. A convenient and versatile strategy for the functionalization of silica foams using high internal phase emulsion templates as microreactors[J]. ACS Applied Materials & Interfaces, 2020, 12(12): 14607-14619
[60] YU H, ZHENG Z, HU B, et al. Facile and scalable synthesis of functional Janus nanosheets: A polyethoxysiloxane assisted surfactant-free high internal phase emulsion approach[J]. Journal of Colloid and Interface Science, 2022, 606(Pt 2): 1554-1562
[61] DU X, ZOU G, WANG X. Controllable and scalable synthesis of ordered mesoporous silica nanosheets by using acidified g-C3N4 as a lamellar surfactant[J]. Nanotechnology, 2017, 28(29): 29LT01
[62] SHEN Z, CAI Q, YIN C, et al. Facile synthesis of silica nanosheets with hierarchical pore structure and their amine-functionalized composite for enhanced CO2 capture[J]. Chemical Engineering Science, 2020, 217: 115528
[63] SINGH B, POLSHETTIWAR V. Solution-phase synthesis of two-dimensional silica nanosheets using soft templates and their applications in CO2 capture[J]. Nanoscale, 2019, 11(12): 5365-5376
[64] JI Q, YAMAZAKI T, HANAGATA N, et al. Silica-based gene reverse transfection: An upright nanosheet network for promoted DNA delivery to cells[J]. Chemical Communications, 2012, 48(68): 8496-8498
[65] SUN J, LIU X, TANG Q, et al. Morphology adjustable silica nanosheets for immobilization of gold nanoparticles[J]. ChemistrySelect, 2017, 2(20): 5793-5799
[66] JI Q, YAMAZAKI T, SUN J, et al. Spongelike porous silica nanosheets: From "soft" molecular trapping to DNA delivery[J]. ACS Applied Materials & Interfaces, 2017, 9(5): 4509-4518
[67] JI Q, GUO C, YU X, et al. Flake-shell capsules: Adjustable inorganic structures[J]. Small, 2012, 8(15): 2345-2349
[68] WANG X, XU J, WANG Q, et al. Wet chemical synthesis of silica nanosheets via ethyl acetate-mediated hydrolysis of silica precursors and their applications[J]. Small, 2017, 13(13): 201603369
[69] WANG X, CHEN L, TENG Z, et al. Facile method to efficiently fabricate large-size mesoporous organosilica nanosheets with uniform tunable pore size for robust separation membranes[J]. Chemistry of Materials, 2019, 31(10): 3823-3830
[70] PATWARDHAN S V, MUKHERJEE N, STEINTZ-KANNAN M, et al. Bioinspired synthesis of new silica structures[J]. Chemical Communications, 2003(10): 1122-1123
[71] CHEN H, XIA L, FU W, et al. One-step synthesis of water dispersible silica nanoplates[J]. Chemical Communications, 2013, 49(13): 1300-1302
[72] YAO D, CHEN Y, JIN R. Different dimensional silica materials prepared using shaped block copolymer nanoobjects as catalytic templates[J]. Journal of Materials Chemistry B, 2015, 3(28): 5786-5794
[73] LUTZ H, JAEGER V, BERGER R, et al. Biomimetic growth of ultrathin silica sheets using artificial amphiphilic peptides[J]. Advanced Materials Interfaces, 2015, 2(17): 1500282
[74] JIN R, YAO D, LEVI R T. Biomimetic synthesis of shaped and chiral silica entities templated by organic objective materials[J]. Chemistry, 2014, 20(24): 7196-7214
[75] SHEN J, WU Y, ZHANG B, et al. Preparation of mesoporous silica nanosheets through electrospinning: A novel scroll mechanism[J]. RSC Advances, 2014, 4(25): 12805-12808
[76] YANG S, ZHAN L, XU X, et al. Graphene-based porous silica sheets impregnated with polyethyleneimine for superior CO2 capture[J]. Advanced Materials, 2013, 25(15): 2130-2134
[77] SHEN T, GAO M. Gemini surfactant modified organo-clays for removal of organic pollutants from water: A review[J]. Chemical Engineering Journal, 2019, 375: 121910
[78] ZHAO M, TANG Z, LIU P. Removal of methylene blue from aqueous solution with silica nano-sheets derived from vermiculite[J]. Journal of Hazardous Materials, 2008, 158(1): 43-51
[79] SHEN T, MAO S, DING F, et al. Selective adsorption of cationic/anionic tritoluene dyes on functionalized amorphous silica: A mechanistic correlation between the precursor, modifier and adsorbate[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 618: 126435
[80] SHEN J, WU Y, ZHANG B, et al. Adsorption of Rhodamine B dye by biomimetic mesoporous SiO2 nanosheets[J]. Clean Technologies and Environmental Policy, 2015, 17(8): 2289-2298
[81] ZHANG Y, TENG Z, NI Q, et al. Orderly curled silica nanosheets with a small size and macromolecular loading pores: Synthesis and delivery of macromolecules to eradicate drug-resistant cancer[J]. ACS Applied Materials & Interfaces, 2020, 12(52): 57810-57820
[82] LIU Y, SHEN D, CHEN G, et al. Mesoporous silica thin membranes with large vertical mesochannels for nanosize-based separation[J]. Advanced Materials, 2017, 29(35): 1702274
|