[1] ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials, 2017, 2(2): 1-17 [2] GOGOTSI Y, ANASORI B. The rise of MXenes[J]. ACS Nano, 2019, 13(8): 8491-8494 [3] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253 [4] CHAMPAGNE A, CHARLIER J. Physical properties of 2D MXenes: From a theoretical perspective[J]. Phys Mater, 2022,3: 032006 [5] WANG C, CHEN S, SONG L. Tuning 2D MXenes by surface controlling and interlayer engineering: Methods, properties, and synchrotron radiation characterizations[J]. Advanced Functional Materials, 2020, 30(47): 2000869 [6] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: A new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7): 992-1005 [7] PANDEY M, THYGESEN K S. Two-dimensional MXenes as catalysts for electrochemical hydrogen evolution: A computational screening study[J]. The Journal of Physical Chemistry C, 2017, 121(25): 13593-13598 [8] ZHAN C, SUN W, KENT P R C, et al. Computational screening of MXene electrodes for pseudocapacitive energy storage[J]. The Journal of Physical Chemistry C, 2019, 123(1): 315-321 [9] KANG Z, KHAN M A, GONG Y, et al. Recent progress of MXenes and MXene-based nanomaterials for the electrocatalytic hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2021, 9(10): 6089-6108 [10] FIRESTEIN K L, FERNANDO J F S, ZHANG C, et al. Delaminated V2C MXene nanostructures prepared via LiF salt etching for electrochemical applications[J]. ACS Applied Nano Materials, 2022, 5(9): 12117-12125 [11] XU Y, WANG X, ZHANG W, et al. Recent progress in two-dimensional inorganic quantum dots[J]. Chemical Society Reviews, 2018, 47(2): 586-625 [12] MA R, SASAKI T. Nanosheets of oxides and hydroxides: Ultimate 2D charge-bearing functional crystallites[J]. Advanced Materials, 2010, 22(45): 5082-5104 [13] JIANG X, KUKLIN A V, BAEV A, et al. Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications[J]. Physics Reports, 2020, 848: 1-58 [14] ZHANG S, LI X, YANG W, et al. A novel synthesis of red phosphorus nanodots/Ti3C2Tx MXenes from low-cost Ti3SiC2 MAX phases for superior lithium and sodium ion batteries[J]. Mater Interfaces 2019, 11: 42086-42093 [15] ZHAO Z, WU X, LUO C, et al. Rational design of Ti3C2Cl2 MXenes nanodots-interspersed MXene@NiAl-layered double hydroxides for enhanced pseudocapacitor storage[J]. Journal of Colloid and Interface Science, 2022, 609: 393-402 [16] CAYUELA A, SORIANO M L, CARRILLO-CARRIÓN C, et al. Semiconductor and carbon-based fluorescent nanodots: The need for consistency[J]. Chemical Communications, 2016, 52(7): 1311-1326 [17] ABID N, KHAN A M, SHUJAIT S, et al. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review[J]. Advances in Colloid and Interface Science, 2022, 300: 102597 [18] XUE Q, ZHANG H, ZHU M, et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging[J]. Advanced Materials, 2017, 29(15): 1604847 [19] CAO Y, WU T, ZHANG K, et al. Engineered exosome-mediated near-infrared-II region V2C quantum dot delivery for nucleus-target low-temperature photothermal therapy[J]. ACS Nano, 2019, 13(2): 1499-1510 [20] SHARBIRIN A S, ROY S, TRAN T T, et al. Light-emitting Ti2N (MXene) quantum dots: Synthesis, characterization and theoretical calculations[J]. Journal of Materials Chemistry C, 2022, 10(16): 6508-6514 [21] LI S, MA J, ZHAO X, et al. Highly fluorescence Ta4C3 MXene quantum dots as fluorescent nanoprobe for heavy ion detection and stress monitoring of fluorescent hydrogels[J]. Chinese Chemical Letters, 2022, 33(4): 1850-1854 [22] XU Q, MA J, KHAN W, et al. Highly green fluorescent Nb2C MXene quantum dots[J]. Chemical Communications, 2020, 56(49): 6648-6651 [23] LI S, ZHENG H, DING L, et al. Machine learning guided full-color V4C3 MXene quantum dots for building WLEDs[J]. Journal of Materials Chemistry C, 2022, 10(38): 14282-14287 [24] FENG Y, ZHOU F, DENG Q, et al. Solvothermal synthesis of in situ nitrogen-doped Ti3C2 MXene fluorescent quantum dots for selective Cu2+ detection[J]. Ceramics International, 2020, 46(6): 8320-8327 [25] LI Y, DING L, GUO Y, et al. Boosting the photocatalytic ability of g-C3N4 for hydrogen production by Ti3C2 MXene quantum dots[J]. ACS Applied Materials & Interfaces, 2019, 11(44): 41440-41447 [26] SHAO J, ZHANG J, JIANG C, et al. Biodegradable titanium nitride MXene quantum dots for cancer phototheranostics in NIR-I/II biowindows[J]. Chemical Engineering Journal, 2020, 400: 126009 [27] HUANG D, XIE Y, LU D, et al. Demonstration of a white laser with V2C MXene-based quantum dots[J]. Advanced Materials, 2019, 31(24): 1901117 [28] ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2T<i>x MXene)[M]//MXenes. New York: Jenny Stanford Publishing, 2023: 415-449 [29] WANG Z, XUAN J, ZHAO Z, et al. Versatile cutting method for producing fluorescent ultrasmall MXene sheets[J]. ACS Nano, 2017, 11(11): 11559-11565 [30] SHUCK C E, HAN M K, MALESKI K, et al. Effect of Ti3AlC2 MAX phase on structure and properties of resultant Ti3C2Tx MXene[J]. ACS Applied Nano Materials, 2019, 2(6): 3368-3376 [31] WANG X, SUN G, LI N, et al. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy[J]. Chemical Society Reviews, 2016, 45(8): 2239-2262 [32] NDLWANA L, RALEIE N, DIMPE K M, et al. Sustainable hydrothermal and solvothermal synthesis of advanced carbon materials in multidimensional applications: A review[J]. Materials, 2021, 14(17): 5094 [33] YOON Y, LEE K, LEE H. Low-dimensional carbon and MXene-based electrochemical capacitor electrodes[J]. Nanotechnology, 2016, 27(17): 172001 [34] LIN H, CHEN Y, SHI J. Insights into 2D MXenes for versatile biomedical applications: Current advances and challenges ahead[J]. Adv Sci,2018, 5, 1800518-1800538 [35] WANG Y, LI C, HAN X, et al. Ultrasmall Mo2C nanoparticle-decorated carbon polyhedrons for enhanced microwave absorption[J]. ACS Applied Nano Materials, 2018, 1(9): 5366-5376 [36] YI H, HUANG Y, SHA Z, et al. Facile synthesis of Mo2N quantum dots embedded N-doped carbon nanosheets composite as advanced anode materials for lithium-ion batteries[J]. Materials Letters, 2020, 276: 128205 [37] ZHOU L, WU F, YU J, et al. Titanium carbide (Ti3C2Tx) MXene: A novel precursor to amphiphilic carbide-derived graphene quantum dots for fluorescent ink, light-emitting composite and bioimaging[J]. Carbon, 2017, 118: 50-57 [38] CHENG H, DING L, CHEN G, et al. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions[J]. Carbon 2017, 118: 50-57 [39] ZHANG S, YING H, HUANG P, et al. Hierarchical utilization of raw Ti3C2Tx MXene for fast preparation of various Ti3C2Tx MXene derivatives[J]. Nano Research, 2022, 15(3): 2746-2755 [40] LIN H, GAO S, DAI C, et al. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows[J]. Journal of the American Chemical Society, 2017, 139(45): 16235-16247 [41] SANG X, XIE Y, YILMAZ D E, et al. In situ atomistic insight into the growth mechanisms of single layer 2D transition metal carbides[J]. Nature Communications, 2018, 9(1): 1-9 [42] WU X, WANG J, WANG Z, et al. Boosting the electrocatalysis of MXene by plasmon-induced thermalization and hot-electron injection[J]. Chem, 2021, 60: 9416-9420 [43] XU Q, YANG W, WEN Y, et al. Hydrochromic full-color MXene quantum dots through hydrogen bonding toward ultrahigh-efficiency white light-emitting diodes[J]. Applied Materials Today, 2019, 16: 90-101 [44] XU Q, DING L, WEN Y, et al. High photoluminescence quantum yield of 18.7% by using nitrogen-doped Ti3C2 MXene quantum dots[J]. Journal of Materials Chemistry C, 2018, 6(24): 6360-6369 [45] LU S, SUI L, LIU Y, et al. White photoluminescent Ti3C2 MXene quantum dots with two-photon fluorescence[J]. Adv Sci, 2019, 6:1801470 [46] AGRESTI A, PAZNIAK A, PESCETELLI S, et al. Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells[J]. Nature Materials, 2019, 18(11): 1228-1234 [47] ALHAMADA T F, AZMAH HANIM M A, JUNG D W, et al. A brief review of the role of 2D mxene nanosheets toward solar cells efficiency improvement[J]. Nanomaterials, 2021, 11(10): 2732 [48] YAKUSHEVA A, SARANIN D, MURATOV D, et al. Photo stabilization of p-i-n perovskite solar cells with bathocuproine: MXene[J]. Small, 2022, 18: 2201730 [49] YANG Y, LU H, FENG S, et al. Modulation of perovskite crystallization processes towards highly efficient and stable perovskite solar cells with MXene quantum dot-modified SnO2[J]. Energy & Environmental Science, 2021, 14(6): 3447-3454 [50] ZHU X, ZHANG Z, XUE Z, et al. Understanding the selective detection of Fe3+ based on graphene quantum dots as fluorescent probes: The Ksp of a metal hydroxide-assisted mechanism[J]. Chem, 2017, 89: 12054-12058 [51] DAI B, ZHAO B, XIE X, et al. Novel two-dimensional Ti3C2Tx MXenes/nano-carbon sphere hybrids for high-performance microwave absorption[J]. Journal of Materials Chemistry C, 2018, 6(21): 5690-5697 [52] PERINI G, ROSENKRANZ A, FRIGGERI G, et al. Advanced usage of Ti3C2Tx MXenes for photothermal therapy on different 3D breast cancer models[J]. Bio Phar, 2022,153:113496 [53] DESAI M L, BASU H, SINGHAL R, et al. Ultra-small two dimensional MXene nanosheets for selective and sensitive fluorescence detection of Ag+and Mn2+ ions[J]. Colloids Surf A. Physicochem Eng Asp, 2019, 565: 70-77 [54] LIU Y, LI Y. Versatile Types of inorganic/organic NIR-IIa/IIb fluorophores: From strategic design toward molecular imaging and theranostics chem[J]. Rev, 2022, 122: 209-268 [55] ZHANG S, LIU L, REN S, et al. Recent advances in nonlinear optics for bio-imaging applications[J]. Opto-Electronic Advances, 2020, 3(10): 200003 [56] ZHAI W, XIONG T, HE Z, et al. Nanodots derived from layered materials: Synthesis and applications[J]. Advanced Materials, 2021, 33(46): 2006661 [57] BHARDWAJ S K, SINGH H, KHATRI M, et al. Advances in MXenes-based optical biosensors: A review[J]. Biosensors and Bioelectronics, 2022, 202: 113995 [58] IRAVANI S. MXenes and MXene-based (nano) structures: A perspective on greener synthesis and biomedical prospects[J]. Ceramics International, 2022, 48(17): 24144-24156 [59] VASYUKOVA I A, ZAKHAROVA O V, KUZNETSOV D V, et al. Synthesis, toxicity assessment, environmental and biomedical applications of MXenes: A review[J]. Nanomaterials, 2022, 12(11): 1797-1827 [60] RASHID B, ANWAR A, SHAHABUDDIN S, et al. A comparative study of cytotoxicity of PPG and PEG surface-modified 2D Ti3C2 MXene flakes on human cancer cells and their photothermal response[J]. Materials, 2021, 14(16): 4370-4384
|