[1] LANDER H, NIXON A C. Endothermic fuels for hypersonic vehicles[J]. Journal of Aircraft, 1971, 8(4):200-207
[2] SREEKIREDDY P, REDDY T K K, SELVARAJ P, et al. Analysis of active cooling panels in a scramjet combustor considering the thermal cracking of hydrocarbon fuel[J]. Applied Thermal Engineering, 2019, 147:231-241
[3] SOBEL D R, SPADACCINI L J. Hydrocarbon fuel cooling technologies for advanced propulsion[J]. Journal of Engineering for Gas Turbines and Power, 1997, 119(2):344-351
[4] 孙道安,李春迎,杜咏梅,等.吸热燃料催化裂解研究进展[J].化工进展, 2012, 31(9):1959-1967 SUN Daoan, LI Chunying, DU Yongmei, et al. Progress of catalytic cracking of endothermic fuels[J]. Chemical Industry and Engineering Progress, 2012, 31(9):1959-1967(in Chinese)
[5] JIANG R, LIU G, HE X, et al. Supercritical thermal decompositions of normal-and iso-dodecane in tubular reactor[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92(2):292-306
[6] HOU L, DONG N, REN Z, et al. Cooling and coke deposition of hydrocarbon fuel with catalytic steam reforming[J]. Fuel Processing Technology, 2014, 128:128-133
[7] HUANG H, SPADACCINI L, SOBEL D. Endothermic heat-sink of jet fuels for scramjet cooling[C]//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit. Indianapolis, Indiana. Reston, Virginia:AIAA, 2002
[8] XU K, SUN X, MENG H. Conjugate heat transfer, endothermic fuel pyrolysis and surface coking of aviation kerosene in ribbed tube at supercritical pressure[J]. International Journal of Thermal Sciences, 2018, 132:209-218
[9] JIN B, JING K, LIU J, et al. Pyrolysis and coking of endothermic hydrocarbon fuel in regenerative cooling channel under different pressures[J]. Journal of Analytical and Applied Pyrolysis, 2017, 125:117-126
[10] LI Y, JIN B, ZHANG X, et al. Pyrolysis and heat sink of an endothermic hydrocarbon fuel EHF-851[J]. Journal of Analytical and Applied Pyrolysis, 2021, doi:10.1016/j.jaap.2021.105084
[11] WANG Z, GUO Y, LIN R. Pyrolysis of hydrocarbon fuel ZH-100 under different pressures[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85(1/2):534-538
[12] 李海静,刘国柱,张香文.全二维气相色谱-质谱分析煤油基吸热型碳氢燃料烃族组成[J].色谱, 2018, 36(8):780-785 LI Haijing, LIU Guozhu, ZHANG Xiangwen. Analysis of kerosene-based endothermic hydrocarbon fuel using comprehensive two-dimensional gas chromatography coupled to mass spectrometry[J]. Chinese Journal of Chromatography, 2018, 36(8):780-785(in Chinese)
[13] YUE L, WU J, GONG Y, et al. Heat transfer and cracking performance of endothermic hydrocarbon fuel when it cools a high temperature channel[J]. Fuel Processing Technology, 2016, 149:112-120
[14] JIA T, ZHANG X, LIU Y, et al. A comprehensive review of the thermal oxidation stability of jet fuels[J]. Chemical Engineering Science, 2021, doi:10.1016/j.ces.2020.116157
[15] 许国梁,陈帅,吴春田,等.乙醇辅助碳氢燃料催化吸热反应[J].含能材料, 2020, 28(5):416-423 XU Guoliang, CHEN Shuai, WU Chuntian, et al. Ethanol-assisted catalytic endothermic reaction of hydrocarbon fuel[J]. Chinese Journal of Energetic Materials, 2020, 28(5):416-423(in Chinese)
[16] PAN Y, ZHANG H, ZHANG C, et al. Supercritical pyrolysis and coking of JP-10 in regenerative cooling channels[J]. Energy&Fuels, 2020, 34(2):1627-1638
[17] JIANG R, LIU G, ZHANG X. Thermal cracking of hydrocarbon aviation fuels in regenerative cooling microchannels[J]. Energy&Fuels, 2013, 27(5):2563-2577
[18] LIU Z, BI Q, FENG J. Evaluation of heat sink capability and deposition propensity of supercritical endothermic fuels in a minichannel[J]. Fuel, 2015, 158:388-398
[19] ZHU Y, LIU B, JIANG P. Experimental and numerical investigations on n-decane thermal cracking at supercritical pressures in a vertical tube[J]. Energy&Fuels, 2014, 28(1):466-474
[20] ZHENG Q, XIAO Z, XU J, et al. Catalytic steam reforming and heat sink of high-energy-density fuels:Correlation of reaction behaviors with molecular structures[J]. Fuel, 2021, doi:10.1016/j.fuel.2020.119371
[21] QIN X, YUE L, WU J, et al. Thermal stability and decomposition kinetics of 1, 3-dimethyladamantane[J]. Energy&Fuels, 2014, 28(10):6210-6220
[22] XIE J, JIA T, GONG S, et al. Synthesis and thermal stability of dimethyl adamantanes as high-density and high-thermal-stability fuels[J]. Fuel, 2020, doi:10.1016/j.fuel.2019.116424
[23] ZHONG F, FAN X, YU G, et al. Thermal cracking and heat sink capacity of aviation kerosene under supercritical conditions[J]. Journal of Thermophysics and Heat Transfer, 2011, 25(3):450-456
[24] ZHAO G, SONG W, ZHANG R. Effect of pressure on thermal cracking of China RP-3 aviation kerosene under supercritical conditions[J]. International Journal of Heat and Mass Transfer, 2015, 84:625-632
[25] ZHOU W, JIA Z, QIN J, et al. Experimental study on effect of pressure on heat sink of n-decane[J]. Chemical Engineering Journal, 2014, 243:127-136
[26] LI F, LI Z, JING K, et al. Thermal cracking of endothermic hydrocarbon fuel in regenerative cooling channels with different geometric structures[J]. Energy&Fuels, 2018, 32(6):6524-6534
[27] LEI Z, LIU B, HUANG Q, et al. Thermal cracking characteristics of n-decane in the rectangular and circular tubes[J]. Chinese Journal of Chemical Engineering, 2019, 27(12):2876-2883
[28] JIANG Y, QIN J, XU Y, et al. The influences of variable sectional area design on improving the hydrocarbon fuel flow distribution in parallel channels under supercritical pressure[J]. Fuel, 2018, 233:442-453
[29] TANG S, LUO X, CAI C, et al. Relationship between coking behavior in hydrocarbon fuel pyrolysis and surface roughness[J]. Energy&Fuels, 2018, 32(2):1223-1229
[30] SUN D, DU Y, ZHANG J, et al. Effects of molecular structures on the pyrolysis and anti-coking performance of alkanes for thermal management[J]. Fuel, 2017, 194:266-273
[31] YUE L, LI G, HE G, et al. Impacts of hydrogen to carbon ratio (H/C) on fundamental properties and supercritical cracking performance of hydrocarbon fuels[J]. Chemical Engineering Journal, 2016, 283:1216-1223
[32] SUN D, DU Y, LI C, et al. Theoretic heat sink simulation and experimental investigation of the pyrolysis of substituted cyclohexanes[J]. Journal of Energy Chemistry, 2015, 24(1):119-125
[33] SUN D, LI C, DU Y, et al. Effects of endothermic hydrocarbon fuel composition on the pyrolysis and anti-coking performance under supercritical conditions[J]. Fuel, 2019, 239:659-666
[34] YU J, ESER S. Supercritical-phase thermal decomposition of binary mixtures of jet fuel model compounds[J]. Fuel, 2000, 79(7):759-768
[35] LI G, ZHANG C, WEI H, et al. Investigations on the thermal decomposition of JP-10/iso-octane binary mixtures[J]. Fuel, 2016, 163:148-156
[36] HUANG B, BAI P, NEUROCK M, et al. Conversion of n-hexane and n-dodecane over H-ZSM-5, H-Y and Al-MCM-41 at supercritical conditions[J]. Applied Catalysis A:General, 2017, 546:149-158
[37] 李佳,邹吉军,张香文,等.吸热燃料在管式涂层反应器内的催化裂解反应[J].石油化工, 2007, 36(4):328-333 LI Jia, ZOU Jijun, ZHANG Xiangwen, et al. Catalytic cracking of endothermic fuels in coated tube reactor[J]. Petrochemical Technology, 2007, 36(4):328-333(in Chinese)
[38] JI Y, YANG H, YAN W. Effect of alkali metal cations modification on the acid/basic properties and catalytic activity of ZSM-5 in cracking of supercritical n-dodecane[J]. Fuel, 2019, 243:155-161
[39] XING Y, LI D, XIE W, et al. Catalytic cracking of tricyclo[5.2.1.02.6] decane over HZSM-5 molecular sieves[J]. Fuel, 2010, 89(7):1422-1428
[40] DIAO Z, CHENG L, HOU X, et al. Fabrication of the hierarchical HZSM-5 membrane with tunable mesoporosity for catalytic cracking of n-dodecane[J]. Catalysts, 2019, doi:10.3390/catal9020155
[41] TIAN Y, QIU Y, HOU X, et al. Catalytic cracking of JP-10 over HZSM-5 nanosheets[J]. Energy&Fuels, 2017, 31(11):11987-11994
[42] SUN W, LIU G, WANG L, et al. Quasi-homogeneous catalytic cracking of JP-10 over high hydrocarbon dispersible nanozeolites[J]. Fuel, 2015, 144:96-102
[43] BAO S, LIU G, WANG L, et al. Quasi-homogeneous catalytic activities of hydrocarbon dispersible HZSM-5 nanocrystals grafted with different alkyl groups[J]. Applied Catalysis A:General, 2011, 405(1/2):61-68
[44] DIAO Z, WANG L, ZHANG X, et al. Catalytic cracking of supercritical n-dodecane over meso-HZSM-5@Al-MCM-41 zeolites[J]. Chemical Engineering Science, 2015, 135:452-460
[45] WANG L, DIAO Z, TIAN Y, et al. Catalytic cracking of endothermic hydrocarbon fuels over ordered meso-HZSM-5 zeolites with Al-MCM-41 shells[J]. Energy&Fuels, 2016, 30(9):6977-6983
[46] LONG L, ZHOU W, QIU Y, et al. Coking and gas products behavior of supercritical n-decane over NiO nanoparticle/nanosheets modified HZSM-5[J]. Energy, 2020, doi:10.1016/j.energy.2019.116540
[47] HOU X, QIU Y, YUAN E, et al. SO2-4/TiO2 promotion on HZSM-5 for catalytic cracking of paraffin[J]. Applied Catalysis A:General, 2017, 537:12-23
[48] SANG Y, LI H. Effect of phosphorus and mesopore modification on the HZSM-5 zeolites for n-decane cracking[J]. Journal of Solid State Chemistry, 2019, 271:326-333
[49] SHANG Q, XU G, TANG N, et al. Fluoride-modified ZSM-5 for endothermic catalytic cracking of n-decane[J]. Microporous and Mesoporous Materials, 2019, doi:10.1016/j.micromeso.2019.109616
[50] JI Y, YANG H, ZHANG Q, et al. Phosphorus modification increases catalytic activity and stability of ZSM-5 zeolite on supercritical catalytic cracking of n-dodecane[J]. Journal of Solid State Chemistry, 2017, 251:7-13
[51] ZHANG J, CHEN T, JIAO Y, et al. Role of acidity in catalytic cracking of n-decane over supported Pt-based catalysts[J]. Applied Surface Science, 2020, doi:10.1016/j.apsusc.2019.145113
[52] WANG Z, ZHANG H, LI S, et al. The performance of Rh/SiO2-Al2O3 catalysts in methycyclohexane cracking reaction[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124:475-485
[53] ZHANG H, WANG Z, LI S, et al. Correlation between structure, acidity and activity of Mo-promoted Pt/ZrO2-TiO2-Al2O3 catalysts for n-decane catalytic cracking[J]. Applied Thermal Engineering, 2017, 111:811-818
[54] LIU B, WANG Z, ZHU Q, et al. Performance of Pt/ZrO2-TiO2-Al2O3 and coke deposition during methylcyclohexane catalytic cracking[J]. Fuel, 2017, 200:387-394
[55] ZHANG J, CHEN T, YAO P, et al. Catalytic cracking of n-decane over monometallic and bimetallic Pt-Ni/MoO3/La-Al2O3 catalysts:Correlations of surface properties and catalytic behaviors[J]. Industrial&Engineering Chemistry Research, 2019, 58(5):1823-1833
[56] E X, ZHANG Y, ZOU J, et al. Oleylamine-protected metal (Pt, Pd) nanoparticles for pseudohomogeneous catalytic cracking of JP-10 jet fuel[J]. Industrial&Engineering Chemistry Research, 2014, 53(31):12312-12318
[57] YE D, ZHAO L, BAI S, et al. New strategy for high-performance integrated catalysts for cracking hydrocarbon fuels[J]. ACS Applied Materials&Interfaces, 2019, 11(43):40078-40090
[58] SIM H S, YETTER R A, HONG S, et al. Enhanced fuel decomposition in the presence of colloidal functionalized graphene sheet-supported platinum nanoparticles[J]. ACS Applied Energy Materials, 2020, 3(8):7637-7648
[59] SONG K H, JEONG S K, JEONG B H, et al. Acid/base-treated activated carbon catalysts for the low-temperature endothermic cracking of n-dodecane with applications in hypersonic vehicle heat management systems[J]. Catalysts, 2020, doi:10.3390/catal10101149
[60] SONG K, JEONG S, PARK K, et al. Supercritical catalytic cracking of n-dodecane over air-oxidized activated charcoal[J]. Fuel, 2020, doi:10.1016/j.fuel.2020.118010
[61] FENG Y, LIU Y, CAO Y, et al. Thermal management evaluation for advanced aero-engines using catalytic steam reforming of hydrocarbon fuels[J]. Energy, 2020, doi:10.1016/j.energy.2019.116738
[62] LIU S, FENG Y, CHU Y, et al. Numerical study of catalytic steam reforming of aviation kerosene at supercritical pressures[J]. Fuel, 2018, 212:375-386
[63] HOU L, ZHANG X, REN Z. Coke suppression of kerosene by wall catalytic steam reforming[J]. Fuel Processing Technology, 2016, 154:117-122
|