[an error occurred while processing this directive]
化学工业与工程
 首页 |  在线投稿 |  期刊介绍 |  编 委 会 |  投稿指南 |  期刊订阅 |  下载中心 |  出版伦理 |  联系我们 |  English
化学工业与工程 2022, Vol. 39 Issue (2) :1-8    DOI: 10.13353/j.issn.1004.9533.20210329
智慧化工专栏 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << | >>
机器学习预测叶片-网孔管线式高剪切混合器性能
王灵杰1, 郭俊恒1, 李文鹏2, 程芹3, 张金利1
1. 天津大学化工学院, 天津 300072;
2. 郑州大学化工学院, 郑州 450000;
3. 安徽大学化学化工学院, 合肥 230601
Forecast of in-line blade-screen high shear mixer's performance based on machine learning
WANG Lingjie1, GUO Junheng1, LI Wenpeng2, CHENG Qin3, ZHANG Jinli1
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
2. School of Chemical Engineering and Technology, Zhengzhou University, Zhengzhou 450000, China;
3. College of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China

摘要
参考文献
相关文章
Download: PDF (3140KB)   HTML ()   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 高剪切混合器作为一种新型的过程强化设备,工业应用日益广泛,但其工程设计依然依靠经验放大。利用不同定转子构型的叶片-网孔管线式高剪切混合器的功耗、液-液传质系数和乳化性能等数据,采用反向传播神经网络算法、循环神经网络算法和决策树算法等机器学习算法对数据进行分析建模,为高剪切混合器的设计与优化提供工具。结果表明:反向传播神经网络算法和循环神经网络算法都可以准确预测高剪切混合器性能,但是单个神经网络算法存在过拟合和泛化能力差的问题,通过将不同机器学习模型融合进一步提高了模型精度和稳定性。基于自动机器学习的PyCaret程序能够准确拟合数据,但在数据量较小的情况下,其优化能力较差。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
王灵杰
郭俊恒
李文鹏
程芹
张金利
关键词高剪切混合器   机器学习   神经网络   功耗   液-液传质   乳化     
Abstract: As a novel type of process intensification equipment, high-shear mixers were increasingly widely used in industry, but their design still relies on experimental scaling-up. Data on power, liquid-liquid mass transfer coefficient and emulsification of in-line high-shear mixers with different stator and rotor configurations were collected. And regression fitting analysis on the collected data was performed using machine learning algorithms such as back propagation neural network, recurrent neural network, decision tree, etc., which provided information for the design and optimization of high-shear mixers. The results show that back propagation neural network and recurrent neural network algorithms can predict high-shear mixer's performance precisely and the accuracy of the model can be further improved by fusing different machine learning models. The PyCaret program based on auto machine learning can accurately fit the data. However, its optimization performance is poor when the amount of data is small.
Keywordshigh shear mixers;   machine learning;   neural networks;   power;   liquid-liquid mass transfer;   emulsification     
Received 2021-03-30;
Fund:国家自然科学基金项目(U20A20151;21776179)。
Corresponding Authors: 张金利,教授,E-mail:zhangjinli@tju.edu.cn。     Email: zhangjinli@tju.edu.cn
About author: 王灵杰(1988-),男,硕士研究生,主要从事机器学习在高剪切方向的研究。
引用本文:   
王灵杰, 郭俊恒, 李文鹏, 程芹, 张金利.机器学习预测叶片-网孔管线式高剪切混合器性能[J].  化学工业与工程, 2022,39(2): 1-8
WANG Lingjie, GUO Junheng, LI Wenpeng, CHENG Qin, ZHANG Jinli.Forecast of in-line blade-screen high shear mixer's performance based on machine learning[J].  Chemcial Industry and Engineering, 2022,39(2): 1-8
Copyright 2010 by 化学工业与工程