[1] ZHANG J, XU S, LI W. High shear mixers:A review of typical applications and studies on power draw, flow pattern, energy dissipation and transfer properties[J]. Chemical Engineering and Processing:Process Intensification, 2012, 57/58:25-41
[2] QIN H, ZHANG C, XU Q, et al. Geometrical improvement of inline high shear mixers to intensify micromixing performance[J]. Chemical Engineering Journal, 2017, 319:307-320
[3] ZHOU J, LI Y, LI D, et al. Online learning based intelligent temperature control during polymer composites microwave curing process[J]. Chemical Engineering Journal, 2019, 370:455-465
[4] WU S, KONDO Y, KAKIMOTO M A, et al. Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm[J]. Npj Computational Materials, 2019, doi:10.1038/s41524-019-0203-2
[5] 孙永利, 王华金, 郝丽, 等. 基于神经网络和遗传算法的螺旋折流板换热器性能预测[J]. 化学工业与工程, 2016, 33(4):49-55 SUN Yongli, WANG Huajin, HAO Li, et al. Performance prediction of shell-and-tube heat exchangers with helical baffles using multilayer perception neural networks optimized with genetic algorithm[J]. Chemical Industry and Engineering, 2016, 33(4):49-55(in Chinese)
[6] LI W, XIA F, ZHAO S, et al. Mixing performance of an inline high-shear mixer with a novel pore-array liquid distributor[J]. Industrial & Engineering Chemistry Research, 2019, 58(44):20213-20225
[7] REN C, AN N, WANG J, et al. Optimal parameters selection for BP neural network based on particle swarm optimization:A case study of wind speed forecasting[J]. Knowledge-Based Systems, 2014, 56:226-239
[8] SONG J, GUO Y, GAO L, et al. From deterministic to generative:Multimodal stochastic RNNs for video captioning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(10):3047-3058
[9] YUAN X, LI L, WANG Y. Nonlinear dynamic soft sensor modeling with supervised long short-term memory network[J]. IEEE Transactions on Industrial Informatics, 2020, 16(5):3168-3176
[10] CHE Z, PURUSHOTHAM S, CHO K, et al. Recurrent neural networks for multivariate time series with missing values[J]. Scientific Reports, 2018, doi:10.1038/s41598-018-24271-9
[11] YU Z, HAGHIGHAT F, FUNG B C M, et al. A decision tree method for building energy demand modeling[J]. Energy and Buildings, 2010, 42(10):1637-1646
[12] GEURTS P, ERNST D, WEHENKEL L. Extremely randomized trees[J]. Machine Learning, 2006, 63(1):3-42
[13] CHEN T, GUESTRIN C. XGBoost:A scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA:ACM, 2016
[14] FRIEDMAN J H. Stochastic gradient boosting[J]. Computational Statistics & Data Analysis, 2002, 38(4):367-378
[15] PyCaret.org. PyCaret[EB/OL]. https://pycaret.org/about. PyCaret version 1.0.0,2020-04-30
[16] CHENG Q, XU S, SHI J, et al. Pump capacity and power consumption of two commercial in-line high shear mixers[J]. Industrial & Engineering Chemistry Research, 2013, 52(1):525-537
[17] 秦宏云. 管线型高剪切混合器的几何构型优化[D]. 天津:天津大学, 2018
|