[1] HU Y, YUILL D P, EBRAHIMIFAKHAR A. The effects of outdoor air-side fouling on frost growth and heat transfer characteristics of a microchannel heat exchanger:An experimental study[J]. International Journal of Heat and Mass Transfer, 2020, doi:10.1016/j.ijheatmasstransfer.2020.119423 [2] TRAFCZYNSKI M, MARKOWSKI M, URBANIEC K, et al. Estimation of thermal effects of fouling growth for application in the scheduling of heat exchangers cleaning[J]. Applied Thermal Engineering, 2021, doi:10.1016/j.applthermaleng.2020.116103 [3] HARCHE R, MOUHEB A, ABSI R. The fouling in the tubular heat exchanger of Algiers refinery[J]. Heat and Mass Transfer, 2016, 52(5):947-956 [4] SARAFRAZ M M, NIKKHAH V, MADANI S A, et al. Low-frequency vibration for fouling mitigation and intensification of thermal performance of a plate heat exchanger working with CuO/water nanofluid[J]. Applied Thermal Engineering, 2017, 121:388-399 [5] OON C S, KAZI S N, HAKIMIN M A, et al. Heat transfer and fouling deposition investigation on the titanium coated heat exchanger surface[J]. Powder Technology, 2020, 373:671-680 [6] 刘明言, REZA M M. 修饰表面抑制不同物系污垢现状[J]. 化学工业与工程, 2010, 27(3):266-270 LIU Mingyan, REZA M M. A brief state-of-the-art overview of various modified surfaces to mitigate deposition of different foulants[J]. Chemical Industry and Engineering, 2010, 27(3):266-270(in Chinese) [7] LIU M, QIANG A, SUN Y. Characteristics of flow and heat transfer in a tube bundle evaporator with a vapour-liquid-solid flow[J]. Chemical Engineering Research and Design, 2007, 85(2):256-262 [8] ARUMEMI-IKHIDE M, SEFIANE K, DUURSMA G, et al. Investigation of flow boiling in circulating three-phase fluidised bed:Part I:Experiments and results[J]. Chemical Engineering Science, 2008, 63(4):881-895 [9] 贾文婷, 姜峰, 齐国鹏, 等. 汽-液-固循环流化床蒸发器热效率的实验研究[J]. 化学工业与工程, 2015, 32(4):39-43 JIA Wenting, JIANG Feng, QI Guopeng, et al. Thermal efficiency in the vapor-liquid-solid multi-pipe circulating fluidized bed evaporator[J]. Chemical Industry and Engineering, 2015, 32(4):39-43(in Chinese) [10] ZHANG L, LI X. A study on boiling heat transfer in three-phase circulating fluidized bed[J]. Chemical Engineering Journal, 2000, 78(2/3):217-223 [11] PRONK P, INFANTE FERREIRA C A, WITKAMP G J. Prevention of crystallization fouling during eutectic freeze crystallization in fluidized bed heat exchangers[J]. Chemical Engineering and Processing:Process Intensification, 2008, 47(12):2140-2149 [12] POPURI A K, GARIMELLA P. Heat transfer studies in a laboratory vertical riser system suitable for waste heat recovery from industrial waste exhaust gases[J]. Chemical Engineering Communications, 2020, 207(11):1616-1623 [13] STRÖHLE S, HASELBACHER A, JOVANOVIC Z R, et al. The effect of the gas-solid contacting pattern in a high-temperature thermochemical energy storage on the performance of a concentrated solar power plant[J]. Energy & Environmental Science, 2016, 9(4):1375-1389 [14] DINIZ FILHO P T, SILVEIRA J L, TUNA C E, et al. Energetic, ecologic and fluid-dynamic analysis of a fluidized bed gasifier operating with sugar cane bagasse[J]. Applied Thermal Engineering, 2013, 57(1/2):116-124 [15] DENG C, SONG W, CHAI Z, et al. Characteristics of tar thermal cracking and catalytic conversion during circulating fluidized bed char gasification[J]. Energy & Fuels, 2020, 34(1):142-149 [16] CAI L, ZHANG Y, GAO S, et al. Process simulation of a lignite-fired circulating fluidized bed boiler integrated with a dryer and a pyrolyzer[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 2016, 38(2):190-201 [17] BLASZCZUK A, NOWAK W. Bed-to-wall heat transfer coefficient in a supercritical CFB boiler at different bed particle sizes[J]. International Journal of Heat and Mass Transfer, 2014, 79:736-749 [18] LIU M, YANG Y, LI X, et al. Concentration of gengnian'an extract with a vapor-liquid-solid evaporator[J]. AIChE Journal, 2005, 51(3):759-765 [19] BLASZCZUK A, NOWAK W, KRZYWANSKI J. Effect of bed particle size on heat transfer between fluidized bed of group b particles and vertical rifled tubes[J]. Powder Technology, 2017, 316:111-122 [20] JIANG F, JIANG T, QI G, et al. Effect of flow directions on multiphase flow boiling heat transfer enhanced by suspending particles in a circulating evaporation system[J]. Transactions of Tianjin University, 2019, 25(3):201-213 [21] LI N, ZHANG Y, JIANG F, et al. Effects of particle type on the particle distribution in a two-pass circulating fluidized bed evaporator with baffle[J]. Powder Technology, 2020, 366:1-11 [22] RAZZAK S A, AGARWAL K, ZHU J X, et al. Numerical investigation on the hydrodynamics of an LSCFB riser[J]. Powder Technology, 2008, 188(1):42-51 [23] ZHENG Y, ZHU J, MARWAHA N S, et al. Radial solids flow structure in a liquid-solids circulating fluidized bed[J]. Chemical Engineering Journal, 2002, 88(1/2/3):141-150 [24] JIANG F, FENG Q, QI G, et al. Flow boiling in a downflow circulating fluidized bed evaporator[J]. Applied Thermal Engineering, 2019, 156:359-370 [25] PRONK P, INFANTE FERREIRA C A, WITKAMP G J. Prevention of fouling and scaling in stationary and circulating liquid-solid fluidized bed heat exchangers:Particle impact measurements and analysis[J]. International Journal of Heat and Mass Transfer, 2009, 52(15/16):3857-3868 [26] AN M, LIU M, MA Y, et al. Multi-scale vibration behavior of a graphite tube with an internal vapor-liquid-solid boiling flow[J]. Powder Technology, 2016, 291:201-213 [27] XU X, LIU M, MA Y, et al. Nonlinear behaviors of vibration acceleration signals in a graphite tube with vapor-liquid-solid boiling flows[J]. Powder Technology, 2017, 316:315-328 [28] MA Y, LIU M, AN M, et al. Experimental investigation of collision behavior of fluidized solid particles on the tube wall of a graphite evaporator by vibration signal analysis[J]. Powder Technology, 2017, 316:303-314 [29] 黄欣, 陈业钢, 苏楠楠, 等. 高盐废水分质结晶及资源化利用研究进展[J]. 化学工业与工程, 2019, 36(1):10-23 HUANG Xin, CHEN Yegang, SU Nannan, et al. Research on fractional crysallization technologies for recovering salts from high salinity wastewater[J]. Chemical Industry and Engineering, 2019, 36(1):10-23(in Chinese) [30] WARTENA R, WINNICK J, PFROMM P H. Recycling kraft pulping chemicals:Cyclic voltammetry of molten salt mixtures containing Na2CO3, Na2SO4, Na2S/Na2S\x\ and Na2O/Na2O2[J]. Journal of Applied Electrochemistry, 2002, 32(7):725-733 [31] JIANG F, YANG M, QI G, et al. Heat transfer and antiscaling performance of a Na2SO4 circulating fluidized bed evaporator[J]. Applied Thermal Engineering, 2019, 155:123-134 [32] YANG M, JIANG F, QI G, et al. Heat transfer performance of a vapor-liquid-solid three-phase circulating fluidized bed evaporation system with different concentrations of Na2SO4 solutions[J]. Applied Thermal Engineering, 2020, doi:10.1016/j.applthermaleng.2020.115833 [33] ABBASI M, SOTUDEH-GHAREBAGH R, MOSTOUFI N, et al. Nonintrusive characterization of fluidized bed hydrodynamics using vibration signature analysis[J]. AIChE Journal, 2010, 56(3):597-603 [34] ZHAO L, HE Y. Power spectrum estimation of the welch method based on imagery EEG[J]. Applied Mechanics and Materials, 2013, 278/279/280:1260-1264 [35] SHEIKHI A, SOTUDEH-GHAREBAGH R, ALFI M, et al. Hydrodynamic characterisation of liquid-solid two-phase fluidized beds:Vibration signature and pressure fluctuations analyses[J]. The Canadian Journal of Chemical Engineering, 2012, 90(6):1646-1653 [36] ABBASI M, SOTUDEH-GHAREBAGH R, MOSTOUFI N, et al. Non-intrusive monitoring of bubbles in a gas-solid fluidized bed using vibration signature analysis[J]. Powder Technology, 2009, 196(3):278-285 [37] JIANG F, WANG H, LIU Y, et al. Effect of particle collision behavior on heat transfer performance in a down-flow circulating fluidized bed evaporator[J]. Powder Technology, 2021, 381:55-67 [38] JIANG F, ZHAO P, QI G, et al. Flow characteristics in a horizontal liquid-solid circulating fluidized bed[J]. Powder Technology, 2019, 342:24-35
|