[1] Pighini S, Ventura M, Miglietta F, et al. Dissolved greenhouse gas concentrations in 40 lakes in the Alpine area[J]. Aquatic Sciences, 2018, 80(3):32, doi:10.1007/s00027-018-0583-2
[2] Yan X, Xu X, Ji M, et al. Cyanobacteria blooms:A neglected facilitator of CH4 production in eutrophic lakes[J]. Science of the Total Environment, 2018, 651:466-474
[3] Li S, Bush R T, Santos I R, et al. Large greenhouse gases emissions from China's lakes and reservoirs[J]. Water Research, 147:13-24
[4] Mader M, Roberts A M, Porst D, et al. River re charge versus O2 supply from the unsaturated zone in shallow riparian groundwater:A case study from the Selke River (Germany)[J]. Science of the Total Environment, 2018, 634:374-381
[5] Lipczynska-Kochany E. Effect of climate change on humic substances and associated impacts on the quality of surface water and groundwater:A review[J]. Science of the Total Environment, 2018, 640-641:1548-1565
[6] Maragkaki A E, Fountoulakis M, Gypakis A, et al. Pilot-scale anaerobic co-digestion of sewage sludge with agro-industrial by-products for increased biogas production of existing digesters at wastewater treatment plants[J]. Waste Management, 2017, 59:362-370
[7] Zhai Y, Pérez-Díaz I M, Diaz J T. Viability of commercial cucumber fermentation without nitrogen or air purging[J]. Trends in Food Science & Technology, 2018, 81:185-192
[8] Mcaleer E B, Coxon C E, Richards K G, et al. Groundwater nitrate reduction versus dissolved gas production:A tale of two catchments[J]. Science of the Total Environment, 2017, 586:372-389
[9] Pan J, Ma J, Wu H, et al. Simultaneous removal of thiocyanate and nitrogen from wastewater by autotrophic denitritation process[J]. Bioresource Technology, 2018, 267:30-37
[10] Pan J, Wei C, Fu B, et al. Simultaneous nitrite and ammonium production in an autotrophic partial denitrification and ammonification of wastewaters containing thiocyanate[J]. Bioresource Technology, 2018, 252:20-27
[11] Mansouri L, Tizaoui C, Geissen S, et al. A comparative study on ozone, hydrogen peroxide and UV based advanced oxidation processes for efficient removal of diethyl phthalate in water[J]. Journal of Hazardous Materials, 2019, 363:401-411
[12] Wang Q, Zhang Y, Wang H, et al. A pathway of free radical generation via copper corrosion and its application to oxygen and ozone activation for the oxidative destruction of organic pollutants[J]. Research on Chemical Intermediates, 2018, 44(12):7391-7410
[13] Compernolle S, Müller J F. Henry's law constants of diacids and hydroxypolyacids:Recommended values[J]. Atmospheric Chemistry and Physics Discussions, 2013, 13:25125-25156
[14] Razdan N K, Koshy D M, Prausnitz J M. Henry's constants of persistent organic pollutants by a group-contribution method based on scaled-particle theory[J]. Environmental Science & Technology, 2017, 51(21):12466-12472
[15] Sousa J M, Ferreira A L, Fagg D P, et al. Temperature dependence of the Henry's law constant for hydrogen storage in NaA zeolites:a Monte Carlo simulation study[J]. Journal of Nanoscience & Nanotechnology, 2012, 12(8):6785-6791
[16] Schnabel T, Vrabec J, Hasse H. Henry's law constants of methane, nitrogen, oxygen and carbon dioxide in ethanol from 273 to 498 K:Prediction from molecular simulation[J]. Fluid Phase Equilibria, 2005, 233(2):134-143
[17] Fenclová D, Blahut A, Vrbka P, et al. Temperature dependence of limiting activity coefficients, Henry's law constants, and related infinite dilution properties of C4-C6 isomeric n-alkyl ethanoates/ethyl n-alkanoates in water. Measurement, critical compilation, correlation, and recommended data[J]. Fluid Phase Equilibria, 2014, 375:347-359
[18] Zhang Y, Yu P, Luo Y. Absorption of CO2 by amino acid-functionalized and traditional dicationic ionic liquids:Properties, Henry's law constants and mechanisms[J]. Chemical Engineering Journal, 2013, 214:355-363
[19] 王凯雄, 姚铭. 亨利定律及其在环境科学与工程中的应用[J]. 浙江树人大学学报:人文社会科学版, 2004, 4(6):85-89 Wang Kaixiong, Yao Ming. A critical review of Henry's law and its application in environmental science and engineering[J]. Journal of Zhejiang Shuren University:Social Science Edition, 2004, 4(6):85-89(in Chinese)
[20] 付晓泰, 王振平, 卢双舫. 气体在水中的溶解机理及溶解度方程[J]. 中国科学:B辑, 1996, (2):124-130 Fu Xiaotai, Wang Zhenping, Lu Shuangfan. Dissolution mechanism and solubility equation of gas in water[J]. Science in China:Series B, 1996, (2):124-130(in Chinese)
[21] Tao D. Role of bubble size in flotation of coarse and fine particles-A review[J]. Separation Science & Technology, 2005, 39(4):741-760
[22] Edzwald J K. Dissolved air flotation and me[J]. Water Research, 2010, 44(7):2077-2106
[23] Prakash R, Majumder S K, Singh A. Flotation technique:Its mechanisms and design parameters[J]. Chemical Engineering and Processing-Process Intensification, 2018, 127:249-270
[24] Kim T, Park H, Han M. Design parameter estimations for adjustable bubble size in bubble generating system[J]. Water Science and Technology, 2017, 77(1):1-6
[25] 王晨, 王振波, 李娅萱, 等. 溶气释放头对气浮气泡生成的影响[J]. 过滤与分离, 2016, 26(4):9-14 Wang Chen, Wang Zhenbo, Li Yaxuan, et al. Effect of dissolved air release head on the generation of flotation bubbles[J]. Journal of Filtration & Separation, 2016, 26(4):9-14(in Chinese)
[26] Cho S, Kim J, Chun J, et al. Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2005, 269(1):28-34
[27] Kim H, Choi T. On Bayesian estimation of regression models subject to uncertainty about functional constraints[J]. Journal of the Korean Statistical Society, 2014, 43(1):133-147
[28] Temesgen T, Bui T T, Han M, et al. Micro and nanobubble technologies as a new horizon for water-treatment techniques:A review[J]. Advances in Colloid and Interface Science, 2017, 246:40-51
[29] Xing Y, Gui X, Cao Y. The hydrophobic force for bubble-particle attachment in flotation-A brief review[J]. Physical Chemistry Chemical Physics, 2017, 19(36):24421-24435
[30] Okada K, Akagi Y, Kogure M, et al. Effect on sur face charges of bubbles and fine particles on air flotation process[J]. Canadian Journal of Chemical Engineering, 2010, 68(3):393-399
[31] Okada K, Akagi Y, Kogure M, et al. Effect on sur face charges of bubbles and fine particles on air flotation process[J]. Canadian Journal of Chemical Engineering, 2010, 68(3):393-399
[32] Han M, Kim M K, Shin M S. Generation of a positively charged bubble and its possible mechanism of formation[J]. Journal of Water Supply:Research and Technology-Aqua, 55(7/8):471-478
[33] 岳鹏. 压力溶气法溶气罐内压及释放器倾角对气泡影响的研究[D]. 西安:西安石油大学, 2017 Yue Peng. The study on the influence of the dissolved air pressure and release angle on bubbles with the method of dissolved air flotation[D]. Xi'an:Xi'an Shiyou University, 2017(in Chinese)
[34] Li C, Zhen K, Hao Y, et al. Effect of dissolved gases in natural water on the flotation behavior of coal[J]. Fuel, 2018, 233:604-609
[35] Okada K, Akagi Y, Kogure M, et al. Effect on surface charges of bubbles and fine particles on air flotation process[J]. Canadian Journal of Chemical Engineering, 2010, 68(3):393-399
[36] Kim M S, Kwak D H. Effect of zeta potential on collision-attachment coefficient and removal efficiency for dissolved carbon dioxide flotation[J]. Environmental Engineering Science, 2016, 34(4):272-280
[37] 桑义敏, 陈家庆, 韩严和, 等. 气浮工艺中气泡-颗粒碰撞效率和理论计算模型研究[J]. 工业水处理, 2014, 34(2):5-10 Sang Yimin, Chen Jiaqing, Han Yanhe, et al. Bubble-Particle collision efficiency in flotation and its theoretical model[J]. Industrial Water Treatment, 2014, 34(2):5-10(in Chinese)
[38] Wang G, Ge L, Mitra S, et al. A review of CFD modelling studies on the flotation process[J]. Minerals Engineering, 2018, 127:153-177
[39] Brabcová Z, Karapantsios T, Kostoglou M, et al. Bubble-particle collision interaction in flotation systems[C]//Colloids and Surfaces A:Physicochemical and Engineering Aspects A Collection of Papers Presented at the 10th Eufoam Conference, Greece:Thessaloniki, 2014
[40] 王静超, 马军, 刘芳. 气浮接触区气泡-颗粒碰撞效率影响因素分析[J]. 工业水处理, 2008, (9):66-69 Wang Jingchao, Ma Jun, Liu Fang. Influential factor analysis of the bubble-particle collision efficiency in the contact zone of dissolved air flotation[J]. Industrial Water Treatment, 2008, (9):66-69(in Chinese)
[41] 刘颖, 金鑫, 金鹏康, 等. 溶气气浮的微气泡影响因素及其与絮体的结合特性[J]. 中国给水排水, 2018, 34(5):1-5 Liu Ying, Jin Xin, Jin Pengkang, et al. Characteristics of microbubbles and microbubble-flocs in dissolved ozone flotation process[J]. China Water & Wastewater, 2018, 34(5):1-5(in Chinese)
[42] 陈翼孙, 胡斌. 气浮净水技术的研究与应用[M]. 上海:上海科学技术出版社, 1983
[43] 王培艳. 平流型加压溶气气浮水处理的研究[D]. 郑州:郑州大学, 2013 Wang Peiyan. Research on advection-type pressurized dissolved air flotation water treatment[D]. Zhengzhou:Zhengzhou University, 2013(in Chinese)
[44] 吴海珍, 韦聪, 于哲, 等. 废水好氧生物处理工艺中氧的传质与强化的理论与实践[J]. 化工进展, 2018, 37(10):4033-4043 Wu Haizhen, Wei Cong, Yu Zhe, et al. Oxygen dissolution and gas liquid mass transfer in aerobic biological wastewater treatment:Theory and practice[J]. Chemical Industry and Engineering Progress, 2018, 37(10):4033-4043(in Chinese)
[45] 杨频, 高飞. 生物无机化学原理[M]. 北京:科学出版社, 2002
[46] 韦朝海, 汝旋, 杨兴舟, 等. 污水生物处理基于氧调控的节能策略[J]. 化工进展, 2018, 37(11):4121-4134 Wei Chaohai, Ru Xuan, Yang Xingzhou, et al. Energy saving strategy based on oxygen control in wastewater bio-treatment[J]. Chemical Industry and Engineering Progress, 2018, 37(11):4121-4134(in Chinese)
[47] Kasprzyk-Hordern B, Ziolek M, Nawrocki J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment[J]. Applied Catalysis B Environmental, 2003, 46:639-669
[48] Kwong C W, Chao C, Hui K, et al. Catalytic ozonation of toluene using zeolite and MCM-41 materials[J]. Environmental Science & Technology, 2008, 42(22):8504-8509
[49] Zhao L, Ma W, Ma J, et al. Characteristic mechanism of ceramic honeycomb catalytic ozonation enhanced by ultrasound with triple frequencies for the degradation of nitrobenzene in aqueous solution[J]. Ultrasonics Sonochemistry, 2014, 21(1):104-112
[50] Nawrocki J. Catalytic ozonation in water:Controversies and questions. Discussion paper[J]. Applied Catalysis B:Environmental, 2013, 142/143:465-471
[51] Nawrocki J, Kasprzyk-Hordern B. The efficiency and mechanisms of catalytic ozonation[J]. Applied Catalysis B:Environmental, 2010, 99(1):27-42
[52] Zhang T, Croué J. Catalytic ozonation not relying on hydroxyl radical oxidation:A selective and competitive reaction process related to metal carboxylate complexes[J]. Applied Catalysis B:Environmental, 2014, 144:831-839
[53] Hama-Aziz K H, Miessner H, Mueller S, et al. Comparative study on 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol removal from aqueous solutions via ozonation, photocatalysis and non-thermal plasma using a planar falling film reactor[J]. Journal of Hazardous Materials, 2018, 343:107-115
[54] Bradu C, Magureanu M, Parvulescu V I. Degradation of the chlorophenoxyacetic herbicide 2,4-D by plasma-ozonation system[J]. Journal of Hazardous Materials, 2017, 336:52-56
[55] Liu M, Preis S, Kornev I, et al. Pulsed corona discharge for improving treatability of coking wastewater[J]. Journal of Environmental Sciences, 2018, 64:306-316
[56] Kova A? evi? V V, Doj A? inovi? B P, Jovi? M S, et al. Measurement of reactive species generated by dielectric barrier discharge in direct contact with water in different atmospheres[J]. Journal of Physics D Applied Physics, 2017, 50(155205):19, doi:10.1088/1361-6463/aa5fde
[57] Yao K, Chi Y, Wang F, et al. The effect of microbubbles on gas-liquid mass transfer coefficient and degradation rate of COD in wastewater treatment[J]. Water Science & Technology, 2016, 73(8):1969-1977
[58] Zheng T, Wang Q, Zhang T, et al. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry[J]. Journal of Hazardous Materials, 2015, 287:412-420
[59] Zhao L, Ma J, Sun Z, et al. Mechanism of heterogeneous catalytic ozonation of nitrobenzene in aqueous solution with modified ceramic honeycomb[J]. Applied Catalysis B Environmental, 2009, 89(3):326-334
[60] Bing J, Hu C, Zhang L. Enhanced mineralization of pharmaceuticals by surface oxidation over mesoporous γ-Ti-Al2O3 suspension with ozone[J]. Applied Catalysis B Environmental, 2017, 202:118-126
[61] Phoochinda W, White D A. Removal of algae using froth flotation[J]. Environmental Technology, 2003, 24(1):87-96
[62] Kurniawati H A, Ismadji S, Liu J C. Microalgae harvesting by flotation using natural saponin and chitosan[J]. Bioresource Technology, 2014, 166:429-434
[63] Singh G, Patidar S K. Microalgae harvesting techniques:A review[J]. Journal of Environmental Management, 2018, 217:499-508
[64] Wu Z, Zhu Y, Huang W, et al. Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium[J]. Bioresource Technology, 2012, 110:496-502
[65] Vandamme D, Foubert I, Fraeye I, et al. Flocculation of Chlorella vulgaris induced by high pH:Role of magnesium and calcium and practical implications[J]. Bioresource Technology, 2012, 105:114-119
[66] Tian Z, Wang C, Ji M. Full-Scale dissolved air flotation (DAF) equipment for emergency treatment of eutrophic water[J]. Water Science & Technology, 2018, 77(7):1802-1809
[67] 王振波, 陈阿强, 杨文三, 等. 溶气气浮分离乳化油的影响因素及其作用机制[J]. 水处理技术, 2017, 43(4):27-30 Wang Zhenbo, Chen Aqiang, Yang Wensan, et al. The influence factors and mechanisms of emulsified oil separation by dissolved air flotation[J]. Technology of Water Treatment, 2017, 43(4):27-30(in Chinese)
[68] Chawaloesphonsiya N, Guiraud P, Painmanakul P. Analysis of cutting-oil emulsion destabilization by aluminum sulfate[J]. Environmental Technology, 2017, 39(11):1450-1460
[69] Zhang Q, Liu S, Yang C, et al. Bioreactor consisting of pressurized aeration and dissolved air flotation for domestic wastewater treatment[J]. Separation and Purification Technology, 2014, 138:186-190
[70] Zheng T, Wang Q, Shi Z, et al. Separation of pollutants from oil-containing restaurant wastewater by novel microbubble air flotation and traditional dissolved air flotation[J]. Separation Science & Technology, 2015, 50(16):2568-2577
[71] Khan O, Madhuranthakam C M R, Douglas P, et al. Optimized PID controller for an industrial biological fermentation process[J]. Journal of Process Control, 2018, 71:75-89
[72] Manser R, Gujer W, Siegrist H. Consequences of mass transfer effects on the kinetics of nitrifiers[J]. Water Research, 2005, 39(19):4633-4642
[73] Laanbroek H J, Gerards S. Competition for limiting amounts of oxygen between Nitrosomonas europaea and Nitrobacter winogradskyi grown in mixed continuous cultures[J]. Archives of Microbiology, 1993, 159(5):453-459
[74] Jiang H, Liu G, Ma Y, et al. A pilot-scale study on start-up and stable operation of mainstream partial nitrification-anammox biofilter process based on online pH-DO linkage control[J]. Chemical Engineering Journal, 2018, 350:1035-1042
[75] Zou Y, Xu X, Wang X, et al. Achieving efficient nitrogen removal and nutrient recovery from wastewater in a combining simultaneous partial nitrification, anammox and denitrification (SNAD) process with a photobioreactor (PBR) for biomass production and generated dissolved oxygen (DO) recycling[J]. Bioresource Technology, 2018, 268:539-548
[76] 高春娣, 李浩, 焦二龙, 等. 交替好氧缺氧短程硝化及其特性[J]. 北京工业大学学报, 2015, 41(1):116-122 Gao Chundi,Li Hao, Jiao Erlong, et al. Alternate oxic-anoxic mode realizing nitrification and its characterization[J]. Journal of Beijing University of Technology, 2015, 41(1):116-122(in Chinese)
[77] Wang H, Song Q, Wang J, et al. Simultaneous nitrification, denitrification and phosphorus removal in an aerobic granular sludge sequencing batch reactor with high dissolved oxygen:Effects of carbon to nitrogen ratios[J]. Science of the Total Environment, 2018, 642:1145-1152
[78] 赵群英, 田敏, 李侃. DO浓度及其空间分布对Orbal氧化沟去除污染物效果[J]. 净水技术, 2018, 37(8):87-89 Zhao Qunying,Tian Min,Li Kan. Effect of DO concentration and the spatial distribution on pollutants removal by orbal oxidation ditch[J]. Water Purification Technology, 2018, 37(8):87-89(in Chinese)
[79] Zhang F, Wei C, Hu Y, et al. Zinc ferrite catalysts for ozonation of aqueous organic contaminants:Phenol and bio-treated coking wastewater[J]. Separation and Purification Technology, 2015, 156:625-635
[80] Wei C, Zhang F, Hu Y, et al. Ozonation in water treatment:The generation, basic properties of ozone and its practical application[J]. Reviews in Chemical Engineering, 2016, 33(1):49-89
[81] 韩涛. 焦化废水尾水的臭氧深度处理及残余臭氧的利用[D]. 广州:华南理工大学, 2015 Han Tao. Advance treatment of coking wastewater effluent with ozone and the utilization of residual ozone[D]. Guangzhou:South China University of Technology, 2015(in Chinese)
[82] Bollmann A F, Seitz W, Prasse C, et al. Occurrence and fate of amisulpride, sulpiride, and lamotrigine in municipal wastewater treatment plants with biological treatment and ozonation[J]. Journal of Hazardous Materials, 2016, 320:204-215
[83] Lin C, Liao J, Wu H, et al. Mechanism of ozone oxidation of polycyclic aromatic hydrocarbons during the reduction of coking wastewater sludge[J]. CLEAN-Soil, Air, Water, 2016, 44(11):1499-1507
[84] Zhang F, Wei C, Wu K, et al. Mechanistic evaluation of ferrite AFe2O4 (A=Co, Ni, Cu, and Zn) catalytic performance in oxalic acid ozonation[J]. Applied Catalysis A:General, 2017, 547:60-68
[85] Ma C, Yuan P, Jia S, et al. Catalytic micro-ozonation by Fe3O4 nanoparticles@cow-dung ash for advanced treatment of biologically pre-treated leachate[J]. Waste Management, 2019, 83:23-32
[86] Yang J, Li J, Zhu J, et al. A novel design for an ozone contact reactor and its performance on hydrodynamics, disinfection, bromate formation and oxidation[J]. Chemical Engineering Journal, 2017, 328:207-214
[87] Zheng T, Zhang T, Wang Q, et al. Advanced treatment of acrylic fiber manufacturing wastewater with a combined microbubble-ozonation/ultraviolet irradiation process[J]. RSC Advances, 5(95):77601-77609
|