[1] FU J, JIANG K, QIU X, et al. Product selectivity of photocatalytic CO2 reduction reactions[J]. Materials Today, 2020, 32: 222-243
[2] GONG E, ALI S, HIRAGOND C B, et al. Solar fuels: Research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels[J]. Energy & Environmental Science, 2022, 15(3): 880-937
[3] 张溪文, 程旭东. 光催化还原二氧化碳研究进展[J]. 化学工业与工程, 2015, 32(3): 24-29 ZHANG Xiwen, CHENG Xudong. Research progress of photocatalytic reduction of carbon dioxide[J]. Chemical Industry and Engineering, 2015, 32(3): 24-29(in Chinese)
[4] 鲍二蓬, 张硕卿, 邹吉军, 等. 特殊形貌光催化剂的研究进展[J]. 化学工业与工程, 2021, 38(2): 19-29 BAO Erpeng, ZHANG Shuoqing, ZOU Jijun, et al. Research progress on special-morphology photocatalysts[J]. Chemical Industry and Engineering, 2021, 38(2): 19-29(in Chinese)
[5] JIAO X, ZHENG K, LIANG L, et al. Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO2 photoreduction[J]. Chemical Society Reviews, 2020, 49(18): 6592-6604
[6] HUMAYUN M, ULLAH H, ALI T A, et al. An overview of the recent progress in polymeric carbon nitride based photocatalysis[J]. The Chemical Record, 2021, 21(7): 1811-1844
[7] ZHAO D, GUAN X, SHEN S. Design of polymeric carbon nitride-based heterojunctions for photocatalytic water splitting: A review[J]. Environmental Chemistry Letters, 2022, 20(6): 3505-3523
[8] CHENG H, HOU J, TAKEDA O, et al. A unique Z-scheme 2D/2D nanosheet heterojunction design to harness charge transfer for photocatalysis[J]. Journal of Materials Chemistry A, 2015, 3(20): 11006-11013
[9] HAN Q, CHEN N, ZHANG J, et al. Graphene/graphitic carbon nitride hybrids for catalysis[J]. Materials Horizons, 2017, 4(5): 832-850
[10] SONG Y, GU J, XIA K, et al. Construction of 2D SnS2/g-C3N4 Z-scheme composite with superior visible-light photocatalytic performance[J]. Applied Surface Science, 2019, 467/468: 56-64
[11] SHAN Q, GUAN B, ZHU S, et al. Facile synthesis of carbon-doped graphitic C3N4@MnO2 with enhanced electrochemical performance[J]. RSC Advances, 2016, 6(86): 83209-83216
[12] ZHANG X, DENG J, YAN J, et al. Cryo-mediated liquid-phase exfoliated 2D BP coupled with 2D C3N4 to photodegradate organic pollutants and simultaneously generate hydrogen[J]. Applied Surface Science, 2019, 490: 117-123
[13] WU D, YE L, YIP Y, et al. Organic-free synthesis of {001} facet dominated BiOBr nanosheets for selective photoreduction of CO2 to CO[J]. Catalysis Science & Technology, 2017, 7(1): 265-271
[14] ZHANG S, LIU Y, GU P, et al. Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous g-C3N4: Mechanism exploration from both experimental and DFT studies[J]. Applied Catalysis B: Environmental, 2019, 248: 1-10
[15] LI M, ZHANG S, LIU X, et al. Polydopamine and barbituric acid co-modified carbon nitride nanospheres for highly active and selective photocatalytic CO2 reduction[J]. European Journal of Inorganic Chemistry, 2019, 2019(15): 2058-2064
[16] SHI Y, LI J, HUANG D, et al. Specific adsorption and efficient degradation of cylindrospermopsin on oxygen-vacancy sites of BiOBr[J]. ACS Catalysis, 2023, 13(1): 445-458
[17] WEN P, ZHAO K, LI H, et al. In situ decorated Ni2P nanocrystal co-catalysts on g-C3N4 for efficient and stable photocatalytic hydrogen evolution via a facile co-heating method[J]. Journal of Materials Chemistry A, 2020, 8(6): 2995-3004
[18] ZHANG S, LI M, LI L, et al. Visible-light-driven multichannel regulation of local electron density to accelerate activation of O—H and B—H bonds for ammonia borane hydrolysis[J]. ACS Catalysis, 2020, 10(24): 14903-14915
[19] 胡寒梅, 王韬, 凌晓慧, 等. BiOBr-OV/RGO复合物的制备及其光催化CO2还原性能[J]. 无机化学学报, 2023, 39(2): 234-244 HU Hanmei, WANG Tao, LING Xiaohui, et al. Preparation and photocatalytic CO2 reduction performance of BiOBr-OV/RGO composite[J]. Chinese Journal of Inorganic Chemistry, 2023, 39(2): 234-244(in Chinese)
[20] LI Y, WANG B, XIANG Q, et al. Alkali metal-modified crystalline carbon nitride for photocatalytic nitrogen fixation[J]. Dalton Transactions, 2022, 51(43): 16527-16535
[21] XU X, WANG X, LIU W, et al. Triethylamine gas sensors based on BiOBr microflowers decorated with ZnO nanocrystals[J]. ACS Applied Nano Materials, 2022, 5(10): 15837-15846
[22] 尚贞晓, 袁佳钰, 王凯玫, 等. MnWO4/WO3的制备及其光催化性能的研究[J]. 化学工业与工程, 2022, 39(5): 11-20 SHANG Zhenxiao, YUAN Jiayu, WANG Kaimei, et al. Preparation of MnWO4/WO3 and its photocatalytic performance[J]. Chemical Industry and Engineering, 2022, 39(5): 11-20(in Chinese)
[23] DAI Y, LI C, SHEN Y, et al. Efficient solar-driven hydrogen transfer by bismuth-based photocatalyst with engineered basic sites[J]. Journal of the American Chemical Society, 2018, 140(48): 16711-16719
[24] TANG R, WANG H, DONG X, et al. A ball milling method for highly dispersed Ni atoms on g-C3N4 to boost CO2 photoreduction[J]. Journal of Colloid and Interface Science, 2023, 630(Pt B): 290-300
[25] XU L, LI H, YAN P, et al. Graphitic carbon nitride/BiOCl composites for sensitive photoelectrochemical detection of ciprofloxacin[J]. Journal of Colloid and Interface Science, 2016, 483: 241-248
[26] YE L, JIN X, LIU C, et al. Thickness-ultrathin and bismuth-rich strategies for BiOBr to enhance photoreduction of CO2 into solar fuels[J]. Applied Catalysis B: Environmental, 2016, 187: 281-290
[27] GONG S, RAO F, ZHANG W, et al. Au nanoparticles loaded on hollow BiOCl microstructures boosting CO2 photoreduction[J]. Chinese Chemical Letters, 2022, 33(9): 4385-4388
[28] GAI Q, REN S, ZHENG X, et al. Controllable photodeposition of nickel phosphide cocatalysts on cadmium sulfide nanosheets for enhanced photocatalytic hydrogen evolution performance[J]. New Journal of Chemistry, 2020, 44(11): 4332-4339
[29] BAI Y, LI M, LIU X, et al. Ti3+ defective TiO2/CdS Z-scheme photocatalyst for enhancing photocatalytic CO2 reduction to C1-C3 products[J]. Industrial & Engineering Chemistry Research, 2022, 61(25): 8724-8737
[30] HE H, CAO J, GUO M, et al. Distinctive ternary CdS/Ni2P/g-C3N4 composite for overall water splitting: Ni2P accelerating separation of photocarriers[J]. Applied Catalysis B: Environmental, 2019, 249: 246-256
[31] ZHANG K, AI Z, HUANG M, et al. Type II cuprous oxide/graphitic carbon nitride p-n heterojunctions for enhanced photocatalytic nitrogen fixation[J]. Journal of Catalysis, 2021, 395: 273-281
[32] YANG Y, ZHANG P, LEI Y, et al. In situ growth of nickel phosphide nanoparticles on inner wall of graphitic carbon nitride tubes for efficient photocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy, 2021, 46(17): 10346-10355
[33] KONG Y, LEE W Q, MOHAMED A R, et al. Effective steering of charge flow through synergistic inducing oxygen vacancy defects and p-n heterojunctions in 2D/2D surface-engineered Bi2WO6/BiOI cascade: Towards superior photocatalytic CO2 reduction activity[J]. Chemical Engineering Journal, 2019, 372: 1183-1193
[34] GOKARNA A, PAVASKAR N R, SATHAYE S D, et al. Electroluminescence from heterojunctions of nanocrystalline CdS and ZnS with porous silicon[J]. Journal of Applied Physics, 2002, 92(4): 2118-2124
[35] LI M, ZHANG S, LI L, et al. Construction of highly active and selective polydopamine modified hollow ZnO/Co3O4 p-n heterojunction catalyst for photocatalytic CO2 reduction[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(30): 11465-11476
[36] DONG J, JI S, ZHANG Y, et al. Construction of Z-scheme MnO2/BiOBr heterojunction for photocatalytic ciprofloxacin removal and CO2 reduction[J]. Acta Physico Chimica Sinica, 2023: 2212011
[37] YANG H, LI F, ZHAN S, et al. Intramolecular hydroxyl nucleophilic attack pathway by a polymeric water oxidation catalyst with single cobalt sites[J]. Nature Catalysis, 2022, 5: 414-429
|