[1] Folkman J. Tumor angiogenesis: Therapeutic implications[J]. The New England Journal of Medicine, 1971, 285(21): 1 182-1 186
[2] Dimova I, Popivanov G, Djonov V. Angiogenesis in cancer-general pathways and their therapeutic implications[J]. J Buon, 2014, 19(1): 15-21
[3] Prokopiou E M, Ryder S A, Walsh J J. Tumour vasculature targeting agents in hybrid/conjugate drugs[J]. Angiogenesis, 2013, 16(3): 503-524
[4] Chen Q, Zhang L, Gasper W, et al. Targeting tumor angiogenesis with gene therapy[J]. Mol Genet Metab, 2001, 74(1/2): 120-127
[5] Hagedorn M, Zilberberg L, Lozano R M, et al. A short peptide domain of platelet factor 4 blocks angiogenic key events induced by FGF-2[J]. Faseb J, 2001, 15(3): 550-552
[6] Bello L, Lucini V, Costa F, et al. Combinatorial administration of molecules that simultaneously inhibit angiogenesis and invasion leads to increased therapeutic efficacy in mouse models of malignant glioma[J]. Clin Cancer Res, 2004, 10(13): 4 527-4 537
[7] Jouan V, Canron X, Alemany M, et al. Inhibition of in vitro angiogenesis by platelet factor-4-derived peptides and mechanism of action[J]. Blood, 1999, 94(3): 984-993
[8] Perollet C, Han Z, Savona C, et al. Platelet factor 4 modulates fibroblast growth factor 2 (FGF-2) activity and inhibits FGF-2 dimerization[J]. Blood, 1998, 91(9): 3 289-3 299
[9] Hagedorn M, Zilberberg L, Lozano R M, et al. A short peptide domain of platelet factor 4 blocks angiogenic key events induced by FGF-2[J]. Faseb J, 2001, 15(3): 550-552
[10] Vandercappellen J, Liekens S, Bronckaers A, et al. The COOH-terminal peptide of platelet factor-4 variant (CXCL4L1/PF-4var47-70) strongly inhibits angiogenesis and suppresses B16 melanoma growth in vivo[J]. Mol Cancer Res, 2010, 8(3): 322-334
[11] Zitzmann S, Ehemann V, Schwab M. Arginine-Glycine-Aspartic acid (RGD)-peptide binds to both tumor and tumor-endothelial cells in vivo[J]. Cancer Res, 2002, 62(18): 5 139-5 143
[12] Garanger E, Boturyn D, Dumy P. Tumor targeting with RGD peptide ligands-design of new molecular conjugates for imaging and therapy of cancers[J]. Anticancer Agents Med Chem, 2007, 7(5): 552-558
[13] Wang J, Han X, Yang H, et al. A novel RGD-toxin protein, Lj-RGD3, from the buccal gland secretion of Lampetra japonica impacts diverse biological activities[J]. Biochimie, 2010, 92(10): 1 387-1 396
[14] Yu Y, Wang Q, Liu Y, et al. Molecular basis for the targeted binding of RGD-containing peptide to integrin alpha(V)beta(3) [J]. Biomaterials, 2014, 35(5): 1 667-1 675
[15] Gardlik R, Celec P, Bernadic M. Targeting angiogenesis for cancer (gene) therapy[J]. Bratisl Med J, 2011, 112(8): 428-434
[16] Eichholz A, Merchant S, Gaya A M. Anti-Angiogenesis therapies: Their potential in cancer management[J]. Oncotargets Ther, 2010, 3: 69-82
[17] Cao Q, Li Z, Chen K, et al. Evaluation of biodistribution and anti-tumor effect of a dimeric RGD peptide-paclitaxel conjugate in mice with breast cancer[J]. Eur J Nucl Med Mol Imaging, 2008, 35(8): 1 489-1 498
[18] Okada Y, Okada N, Mizuguchi H, et al. Transcriptional targeting of RGD fiber-mutant adenovirus vectors can improve the safety of suicide gene therapy for murine melanoma[J]. Cancer Gene Ther, 2005, 12(7): 608-616
|