[1] Deng T, Sun J, Liu H, et al. Cellulose conversion to polyols on supported Ru catalysts in aqueous basic solution[J]. Science China: Chemistry, 2010, 53(7): 1 476-1 480
[2] Kitano M, Yamaguchi D, Suganuma S, et al. Adsorption-Enhanced hydrolysis of β-1,4-glucan on graphene-based amorphous carbon bearing SO3H, COOH, and OH groups[J].Langmuir, 2009, 25(9): 5 068-5 075
[3] Datta R, Tsai S P, Bonsignore P, et al. Technological and economic potential of poly(lactic acid) and lactic acid derivatives[J].FEMS Microbiology Reviews, 1995, 16(2): 221-231
[4] 李翠珍, 黄斌, 罗太安. 纤维素的酸预处理研究[J]. 浙江化工, 2005, 35(11): 4-5 Li Cuizhen,Huang Bin,Luo Taian. The research of acid pretreatment of cellulose[J]. Zhejiang Chemical Industry,2005, 35(11): 4-5(in Chinese)
[5] 潘亚杰, 张雷, 郭军, 等. 农作物秸秆生物法降解的研究[J]. 可再生能源, 2005, (3): 33-35 Pan Yajie, Zhang Lei, Guo Jun, et al. The research of straw biological degradation[J]. Renewable Energy, 2005, (3): 33-35(In Chinese)
[6] Gao M, Xu F, Li S, et al. Effect of SC-CO2 pretreatment in increasing rice straw biomass conversion[J]. Biosystems Engineering, 2010, 106(4): 470-475
[7] Swatloski R P, Spear S K, Holbrey J D, et al. Dissolution of cellose with ionic liquids[J]. Journal of the American Chemical Society, 2002, 124(18): 4 974-4 975
[8] Kocsisová T, Juhasz J, Cvengroá J. Hydrolysis of fatty acid esters in subcritical water[J]. European Journal of Lipid Science and Technology, 2006, 108(8): 652-658
[9] Kruse A, Dinjus E. Hot compressed water as reaction medium and reactant: Properties and synthesis reactions[J]. The Journal of Supercritical Fluids, 2007, 39(3): 362-380
[10] Palkovits R, Tajvidi K, Procelewska J, et al. Hydrogenolysis of cellulose combining mineral acids and hydrogenation catalysts[J]. Green Chemistry, 2010, 12(6): 972-978
[11] Deng W, Liu M, Tan X, et al. Conversion of cellobiose into sorbitol in neutral water medium over carbon nanotube-supported ruthenium catalysts[J]. Journal of Catalysis, 2010, 271: 22-32
[12] Jan G, Stijn VDV, Kevin C, et al. Hydrolytic hydrogenation of cellulose with hydrotreated caesium salts of heteropoly acids and Ru/C[J]. Green Chemistry, 2011, 13(8): 2 167-2 174
[13] Jan G, Stijn VDV, Kevin C, et al. Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid[J]. Chemical Communications, 2011, 47(19): 5 590-5 592
[14] Shimizu K, Furukawa H, Kobayashi N, et al. Effects of Brønsted and Lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose[J]. Green Chemistry, 2009, 11(10): 1 627-1 632
[15] Deng W, Zhang Q, Wang Y. Polyoxometalates as efficient catalysts for transformations of cellulose into platform chemicals[J]. Dalton Transactions, 2012, 41(33): 9 817-9 831
[16] Liu M, Deng W, Zhang Q, et al. Polyoxometalate-Supported ruthenium nanoparticles as bifunctional heterogeneous catalysts for the conversions of cellobiose and cellulose into sorbitol under mild conditions[J]. Chemical Communications, 2011, 47(34): 9 717-9 719
[17] Rafiee E, Shahbazi F, Joshaghani M, et al. The silica supported H3PW12O40 (a heteropoly acid) as an efficient and reusable catalyst for a one-pot synthesis of β-acetamido ketones by Dakin-West reaction[J]. Journal of Molecular Catalysis A, Chemical, 2005, 242(1/2): 129-134
[18] Blasco T, Corma A, Martinez A, et al. Supported heteropolyacid (HPW) catalysts for the continuous alkylation of isobutane with 2-butene: The benefit of using MCM-41 with larger pore diameters[J]. Journal of Catalysis, 1998, 177(2): 306-313
[19] Jan G, Stijn VDV, Kevin C, et al.. Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon[J]. Chemical Communications, 2010, 46(20): 3 577-3 579
[20] Yori J C, Grau J M, Benítez V M, et al. Hydroisomerization-Cracking of n-octane on heteropolyacid H3PW12O40 supported on ZrO2, SiO2 and carbon effect of Pt incorporation on catalyst performance[J]. Applied Catalysis A: General, 2005, 286(1): 71-78
|