[1] Ragauskas A J, Williams C K, Davison B H, et al. The path forward for biofuels and biomaterials[J]. Science, 2006, 311(5760): 484-489
[2] Stephanopoulos G. Challenges in engineering microbes for biofuels production[J]. Science, 2007, 315(5 813): 801-804
[3] 刘健, 陈洪章, 李佐虎. 木糖发酵生产乙醇的研究[J]. 工业微生物, 2001, 31(2): 36-41 Liu Jian, Chen Hongzhang, Li Zuohu. Ethanol production of xylose fermentation by Pichiastipitis[J]. Industrial Microbiology, 2001, 31(2): 36-41(in Chinese)
[4] Hahn-Hägerdal B, Karhumaa K, Fonseca C, et al. Towards industrial pentose-fermenting yeast strains[J]. Applied Microbiology and Biotechnology, 2007, 74(5): 937-953
[5] Matsushika A, Inoue H, Kodaki T, et al. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: Current state and perspectives[J]. Applied Microbiology and Biotechnology, 2009, 84(1): 37-53
[6] Van Vleet J H, Jeffries T W. Yeast metabolic engineering for hemicellulosic ethanol production[J]. Current Opinion in Biotechnology, 2009, 20(3): 300-306
[7] Eliasson A, Christensson C, Wahlbom C F, et al. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae Carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures[J]. Applied and Environmental Microbiology, 2000, 66(8): 3 381-3 386
[8] Van Vleet J H, Jeffries T W, Olsson L. Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose[J]. Metabolic Engineering, 2008, 10(6): 360-369
[9] Fujitomi K, Sanda T, Hasunuma T, et al. Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural[J]. Bioresource Technology, 2012, 111: 161-166
[10] Liu E, Hu Y. Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation[J]. Biochemical Engineering Journal, 2010, 48(2): 204-210
[11] Shen Y, Chen X, Peng B, et al. An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile[J]. Applied Microbiology and Biotechnology, 2012, 96(4): 1 079-1 091
[12] Sonderegger M, Sauer U. Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose[J]. Applied and environmental Microbiology, 2003, 69(4): 1 990-1 998
[13] Wisselink H W, Toirkens M J, Wu Q, et al. Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains[J]. Applied and Environmental Microbiology, 2009, 75(4): 907-914
[14] Zhou H, Cheng J, Wang B, et al. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae[J]. Metabolic Engineering, 2012, 14(6): 611-622
[15] Scalcinati G, Otero J M, Vleet J R H, et al. Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption[J]. FEMS Yeast Research, 2012, 12(5): 582-597
[16] Zhang G, Liu J, Ding W. Decreased xylitol formation during xylose fermentation in Saccharomyces cerevisiae due to over expression of water-forming NADH oxidase[J]. Applied and Environmental Microbiology, 2012, 78(4): 1 081-1 086
[17] Sambrook J D. Molecular cloning: A laboratory manual [M]. Third Edition. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 2001
|