[1] | Xu G, Li Y, Li Z, et al. Kinetics of the hydrogenation of diethyl oxalate to ethylene glycol[J].Industrial & Engineering Chemistry Research.1995, 34(7):2- | [2] | Maihom T, Namuangruk S, Nanok T, et al. Theoretical study on structures and reaction mechanisms of ethylene oxide hydration over H-ZSM-5: Ethylene glycol formation[J]. The Journal of Physical Chemistry C, 2008, 112(33): 12 914-12 920 | [3] | Altiokka M R, Akyalcin S. Kinetics of the hydration of ethylene oxide in the presence of heterogeneous catalyst[J].Industrial & Engineering Chemistry Research.2009, 48(24):10- | [4] | Li X, Chen Y, Chen J. Progress in the synthesis of ethylene glycol through coal chemical industry route[J]. Coal Chemical Industry, 2007, 35(3): 15-18 | [5] | Zhou Z, Li Z, Pan P, et al. Progress in technologies of coal-based ethylene glycol synthesis[J]. Chemical Industry and Engineering Progress, 2010, 29(11): 2 003-2 009 | [6] | Matteoli U, Blanchi M, Menchi G, et al. Homogeneous catalytic hydrogenation of dicarboxylic acid esters[J].Journal of Molecular Catalysis.1984, 22(3):353-362 | [7] | Teunissen H T, Elsevier C J. Ruthenium catalysed hydrogenation of dimethyl oxalate to ethylene glycol[J]. Chemical Communications, 1997, (7): 667-668 | [8] | Van Engelen M C, Teunissen H T, De Vries J G, et al. Suitable ligands for homogeneous ruthenium-catalyzed hydrogenolysis of esters[J].Journal of Molecular Catalysis A: Chemical.2003, 206(1/2):185-192 | [9] | Boardman B, Hanton M J, Van Rensburg H, et al. A tripodal sulfur ligand for the selective ruthenium-catalysed hydrogenation of dimethyl oxalate[J]. Chemical Communications, 2006, (21): 2 289-2 291 | [10] | Chen L, Guo P, Qiao M, et al. Cu/SiO2 catalysts prepared by the ammonia-evaporation method: Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol[J].Journal of Catalysis.2008, 257(1):172-180 | [11] | Yin A, Guo X, Dai W, et al. The nature of active copper species in Cu-HMS catalyst for hydrogenation of dimethyl oxalate to ethylene glycol: New insights on the synergetic effect between Cu0 and Cu+[J]. The Journal of Physical Chemistry C, 2009, 113(25): 11 003-11 013 | [12] | Yin A, Guo X, Fan K, et al. Ion-Exchange temperature effect on Cu/HMS catalysts for the hydrogenation of dimethyl oxalate to ethylene glycol[J]. Chem Cat Chem, 2010, 2(2): 206-213 | [13] | Zhu Y, Wang S, Zhu L, et al. The influence of copper particle dispersion in Cu/SiO2 catalysts on the hydrogenationsynthesis of ethylene glycol[J].Catalysis Letters.2010, 135(3-4):275-281 | [14] | He Z, Lin H, He P, et al. Effect of boric oxide doping on the stability and activity of a Cu-SiO2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol[J].Journal of Catalysis.2011, 277(1):54-63 | [15] | Wang S, Li X, Yin Q, et al. Highly active and selective Cu/SiO2 catalysts prepared by the urea hydrolysis method in dimethyl oxalate hydrogenation[J].Catalysis Communications.2011, 12(13):1- | [16] | Yin A, Wen C, Guo X, et al. Influence of Ni species on the structural evolution of Cu/SiO2 catalyst for the chemoselective hydrogenation of dimethyl oxalate[J].Journal of Catalysis.2011, 280(1):77-88 | [17] | Yue H, Zhao Y, Zhao L, et al. Hydrogenation of dimethyl oxalate to ethylene glycol on a Cu/SiO2/cordierite monolithic catalyst: Enhanced internal mass transfer and stability[J].AIChE Journal.2012, 58(9):2- | [18] | Lin J, Zhao X, Cui Y, et al. Effect of feedstock solvent on the stability of Cu/SiO2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol[J]. Chemical Communications, 2012, (48): 1 177-1 179 | [19] | Ma X, Chi H, Yue H, et al. Hydrogenation of dimethyl oxalate to ethylene glycol over mesoporous Cu-MCM-41 catalysts[J]. AIChE Journal ,2003, 59(7): 2 530-2 539 | [20] | Wang Y, Duan X, Zheng J, et al. Remarkable enhancement of Cu catalyst activity in hydrogenation of dimethyl oxalate to ethylene glycol using gold[J].Catalysis Science and Technology.2012, 2(8):1- | [21] | Wen C, Cui Y, Yin A, et al. Remarkable improvement of catalytic performance for a new cobalt-decorated Cu/HMS catalyst in the hydrogenation of dimethyloxalate[J]. Chem Cat Chem, 2012, (5): 138-141 | [22] | Zhao L, Zhao Y, Wang S, et al. Hydrogenation of dimethyl oxalate using extruded Cu/SiO2 catalysts: Mechanical strength and catalytic performance[J].Industrial & Engineering Chemistry Research.2012, 51(43):13- | [23] | �ٺ���, �����, ��ʤƽ, ��. Cu-MCM-41�������Ʊ����ڲ������������Ҷ���������[J].��ѧ��ҵ�빤��.2013, 30(3):1-6 ��� | [24] | ������, ����, ����, ��. �Ҷ������ƹ��̵�ģ�����[J].��ѧ��ҵ�빤��.2012, 29(4):63-67 ��� | [25] | Brands D S, Poels E K, Bliek A. Ester hydrogenolysis over promoted Cu/SiO2 catalysts[J].Applied Catalysis A: General.1999, 184(2):279-289 | [26] | Toshiaki S, Mitsunori N, Akitsugu O, et al. Dehydrogenation of methanol to methyl formate over Cu-SiO2 catatysts prepared by ion exchange method[J]. Journal of Catalysis, 1986(102): 460-463 | [27] | Kobayashi H, Takezawa N, Minochi C. Methanol-Reforming reaction over copper-containing catalysts—The effects of anions and copper loading in the preparation of the catalysts by kneading method[J].Journal of Catalysis.1981, 69(2):487-494 | [28] | Carlini C, Di Girolamo M, Macinai A, et al. Selective synthesis of isobutanol by means of the Guerbet reaction: Part 2Reaction of methanol/ethanol and methanol/ethanol/n-propanol mixtures over copper based/MeONa catalytic systems[J].. Journal of Molecular Catalysis A: Chemical.2003, 200(1/2):137-146 | [29] | Li Z. Study on catalytic hydrogenation of dimethyl oxalate to ethylene glycol[J]. Chemical Reaction Engineering and Technology, 2004(20): 121-128 | [30] | Liu D, Zhang J, Li D, et al. Hydrogenation of 2-ethylanthraquinone under Taylor flow in single square channel monolith reactors[J].AIChE Journal.2009, 55(3):726-736 | [31] | Ramanathan K, Gopinath A. Light-Off location and front diffusion in a catalytic monolith reactor[J]. AIChE Journal, 2008, 54(7): 1 860-1 873 | [32] | Joshi S Y, Harold M P, Balakotaiah V. Low-Dimensional models for real time simulations of catalytic monoliths[J]. AIChE Journal, 2009, 55(7): 1 771-1 783 | [33] | Avila P, Montes M, Mir E E. Monolithic reactors for environmental applications: A review on preparation technologies[J].Chemical Engineering Journal.2005, 109(1/3):11-36 | [34] | Kapteijn F, Nijhuis T A, Heiszwolf J J, et al. New non-traditional multiphase catalytic reactors based on monolithic structures[J].Catalysis Today.2001, 66(2/4):133-144 | [35] | Ramanathan K, Balakotaiah V, West D H. Ignition criterion for general kinetics in a catalytic monolith[J]. AIChE Journal, 2006, 52(4): 1 623-1 629 | [36] | Centi G, Perathoner S. Novel catalyst design for multiphase reactions[J].Catalysis Today.2003, 79/80(1):3-13 | [37] | Williams J L. Monolith structures, materials, properties and uses[J].Catalysis Today.2001, 69(1/4):3-9 | [38] | Nijhuis T A, Beers A E W, Vergunst T, et al. Preparation of monolithic catalysts[J].Catalysis Reviews.2001, 43(4):345-380 |
|