[1] | |
|
[2] | |
|
[3] | |
|
[4] | |
|
[5] | |
|
[6] | |
|
[7] | |
|
[8] | |
|
[9] | |
|
[10] | |
|
[11] | |
|
[12] | |
|
[13] | |
|
[14] | |
|
[15] |
陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展[J]. 储能科学与技术, 2022, 11(3): 1052-1076. CHEN Haisheng, LI Hong, MA Wentao, et al. Research progress of energy storage in China in 2021[J]. Energy Storage Science and Technology, 2022, 11(3): 1052-1076. (in Chinese) |
|
[16] |
XU G, CAI C, WANG T. Toward Sabatier optimal for ammonia synthesis with paramagnetic phase of ferromagnetic transition metal catalysts[J]. Journal of the American Chemical Society, 2022, 144(50): 23089-23095. DOI:10.1021/jacs.2c10603 |
|
[17] | |
|
[18] |
YUAN Y, ZHOU L, ROBATJAZI H, et al. Earth-abundant photocatalyst for H 2 generation from NH 3 with light-emitting diode illumination[J]. Science, 2022, 378(6622): 889-893. DOI:10.1126/science.abn5636 |
|
[19] |
滕霖, 尹鹏博, 聂超飞, 等. "氨-氢"绿色能源路线及液氨储运技术研究进展[J]. 油气储运, 2022, 41(10): 1115-1129. TENG Lin, YIN Pengbo, NIE Chaofei, et al. Research progress on the "ammonia hydrogen" green energy route and liquid ammonia storage and transportation technology[J]. Oil and gas storage and transportation, 2022, 41(10): 1115-1129. (in Chinese) |
|
[20] |
JIANG L, FU X. An ammonia-hydrogen energy roadmap for carbon neutrality: Opportunity and challenges in China[J]. Engineering, 2021, 7(12): 1688-1691. DOI:10.1016/j.eng.2021.11.004 |
|
[21] |
李育磊, 刘玮, 董斌琦, 等. 双碳目标下中国绿氢合成氨发展基础与路线[J]. 储能科学与技术, 2022, 11(9): 2891-2899. LI Yulei, LIU Wei, DONG Binqi, et al. Green hydrogen ammonia synthesis in China under double carbon target: Research on development basis and route[J]. Energy Storage Science and Technology, 2022, 11(9): 2891-2899. (in Chinese) |
|
[22] | |
|
[23] | |
|
[24] | |
|
[25] | |
|
[26] | |
|
[27] | |
|
[28] | |
|
[29] | |
|
[30] | |
|
[31] | |
|
[32] | |
|
[33] | |
|
[34] | |
|
[35] | |
|
[36] | |
|
[37] | |
|
[38] | |
|
[39] | |
|
[40] | |
|
[41] |
MACQ A. Emploi de l'Ammoniaque comme combustible de remplacement. Compte-rendu des Journées d'Etudes sur les combustibles et carburants nationaux[J]. Louvain, 1941, 286-309. |
|
[42] | |
|
[43] | |
|
[44] | |
|
[45] | |
|
[46] | |
|
[47] |
ISHⅡ H, OHNO E, KOZAKI T, et al. Co-firing method of pulverized coal and ammonia for suppressing the NOx generation: The proceedings of the national symposium on power and energy systems[C]. Japan: The Japan Society of Mechanical Engineers, 2018
|
|
[48] |
李俊彪, 王明华. 基于不同情景模式的燃煤掺氨发电技术的经济性分析[J]. 中国煤炭, 2022, 48(5): 54-59. LI Junbiao, WANG Minghua. Economic analysis of ammonia mixed coal-fired power generation technology based on different scenario modes[J]. China Coal, 2022, 48(5): 54-59. (in Chinese) |
|
[49] | |
|
[50] | |
|
[51] | |
|
[52] | |
|
[53] |
牛涛, 张文振, 刘欣, 等. 燃煤锅炉氨煤混合燃烧工业尺度试验研究[J]. 洁净煤技术, 2022, 28(3): 193-200. NIU Tao, ZHANG Wenzhen, LIU Xin, et al. Industrial-scale experimental investigation of ammonia-coal cofiring in coal-fired boiler[J]. Clean Coal Technology, 2022, 28(3): 193-200. (in Chinese) |
|
[54] | |
|
[55] | |
|
[56] | |
|
[57] |
卢晨. 上船院氨燃料动力7000车位汽车运输船获得挪威船级社原则性认可[J]. 船舶设计通讯, 2022(1): 65. LU Chen. Shanghai shipyard ammonia fuel power 7000 parking car transport ship has been recognized in principle by det norske veritas[J]. Journal of Ship Design, 2022(1): 65. (in Chinese) |
|
[58] | |
|
[59] | |
|
[60] | |
|
[61] |
东商. 东风商用车与清华大学联合开发的国内首台氨柴车用重型发动机点火成功[J]. 商用汽车, 2022(4): 10-11. DONG Shang. Dongfeng Commercial Vehicle and Tsinghua University jointly developed the first heavy-duty engine for ammonia diesel vehicle in China, which was successfully ignited[J]. Commercial Vehicle, 2022(4): 10-11. (in Chinese) |
|
[62] | |
|
[63] | |
|
[64] | |
|
[65] | |
|
[66] | |
|
[67] | |
|
[68] |
ENERGY TRANSITIONS COMMISSION. Making the hydrogen economy possible: Accelerating clean hydrogen in an electrified economy[R]. 2021-04-01
|
|
[69] |
ARNAIZ D P C, CLOETE S. Techno-economic assessment of blue and green ammonia as energy carriers in a low-carbon future[J]. Energy Conversion and Management, 2022, 255: 115312. DOI:10.1016/j.enconman.2022.115312 |
|
[70] |
LEE J S, CHERIF A, YOON H J, et al. Large-scale overseas transportation of hydrogen: Comparative techno-economic and environmental investigation[J]. Renewable and Sustainable Energy Reviews, 2022, 165: 112556. DOI:10.1016/j.rser.2022.112556 |
|
[71] |
WANG Y, LI T, YU Y, et al. Electrochemical synthesis of nitric acid from nitrogen oxidation[J]. Angewandte Chemie International Edition, 2022, 61(12): e202115409. DOI:10.1002/anie.202115409 |
|
[72] |
WANG Y, LI H, ZHOU W, et al. Structurally disordered RuO 2 nanosheets with rich oxygen vacancies for enhanced nitrate electroreduction to ammonia[J]. Angewandte Chemie (International Ed in English), 2022, 61(19): e202202604. DOI:10.1002/anie.202202604 |
|
[73] |
LIU Z, ZHOU L, ZHONG L, et al. Enhanced combustion of ammonia engine based on novel air-assisted pre-chamber turbulent jet ignition[J]. Energy Conversion and Management, 2023, 276: 116526. DOI:10.1016/j.enconman.2022.116526 |
|
[74] |
LAI Y, WANG Z, CUI D, et al. Thermal impact performance study for the thermal management of ammonia-fueled single tubular solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2023, 48(6): 2351-2367. |
|