化学工业与工程  2023, Vol. 40 Issue (2): 17-24
Co2P4O12/NF纳米线阵列的制备与电解水性能研究
张卫国1,2 , 卢宜鹏1 , 王宏智1 , 姚素薇1     
1. 天津大学化工学院, 天津 300350;
2. 天津体育学院, 天津 301617
摘要:以CoCl2·6H2O为原料, 通过溶剂热法和磷化工艺在泡沫镍表面构建Co2P4O12阵列, Co2P4O12纳米线直径约200 nm。采用SEM、TEM和XRD进行形貌和晶体学特性表征, 并利用三电极体系在碱性环境下测量电化学性能。在析氢过程中, 只需要122 mV过电位就能达到10 mA·cm-2电流密度。析氧过程中, 仅需要334 mV的过电位就能达到15 mA·cm-2电流密度。组装的电解池在15 mA·cm-2的电流密度下工作40 h后电解槽电压没有发生明显变化, 展现出很好的稳定性。Co2P4O12/NF是一种有潜力的双功能催化剂。
关键词Co2P4O12    纳米线阵列    析氢过程    析氧过程    双功能催化剂    
Co2P4O12/NF nanowire arrays for water splitting in an alkaline environment
ZHANG Weiguo1,2 , LU Yipeng1 , WANG Hongzhi1 , YAO Suwei1     
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
2. Tianjin University of Sport, Tianjin 301617, China
Abstract: Co2P4O12 array was constructed on the surface of nickel foam by solvothermal method and phosphating at 300 ℃ using CoCl2·6H2O as raw material. The diameter of Co2P4O12 nanowires is about 200 nm. SEM, TEM and XRD were used to characterize the morphology and crystallographic characteristics, and a three-electrode system was constructed to measure the electrochemical performance in alkaline environment. In the process of hydrogen evolution, only 122 mV overpotential is needed to achieve a current density of 10 mA·cm-2. In the process of oxygen evolution, only 334 mV of overpotential is needed to reach the current density of 15 mA·cm-2. The assembled electrolytic cell works for 40 h at the current density of 15 mA·cm-2, and the cell voltage didn't change significantly, showing good stability. The above tests proved that Co2P4O12/NF is a potential bifunctional catalyst.
Keywords: Co2P4O12    nanowire array    hydrogen evolution process    oxygen evolution process    bifunctional catalyst    

氢气是一种理想的清洁能源[1]。水电解制氢是常用的氢气制备方法,由氢气析出过程(HER)和氧气析出过程(OER)组成[2]。在电解水过程中,由于电极极化会导致电解槽电压增大,能源损耗增加[3]。目前成熟的析氢催化剂和析氧催化剂分别是Pt[4]和RuO2/IrO2[5]。它们受制于成本而无法大规模商业应用。多数析氢催化剂在酸性环境中可以表现出最优异的性能,而多数析氧催化剂则是在碱性环境中性能优异,为了匹配最佳的工作区间会使电解池的结构复杂、成本增加。同时能催化2个过程的双功能催化剂能很好的解决这个问题。科研人员发现过渡金属基的硫化物[6-8]、磷化物[9-11]、碳化物[12-14]和氮化物[15-17]等都是有潜力的电极材料。

Co2P4O12拥有特殊的层状结构(CoO6被PO4-围绕)提供了很好的导电性[18]被用于超级电容器并表现出优异的性能。Lv等[19]利用电沉积的方法将TiO2沉积在Co2P4O12上表现出很好的双功能性能,在20 mA ·cm-2的电流密度下进行HER反应仅需81 mV。粉末状的Co2P4O12存在团聚等问题会导致电化学活性面积减小,同时会影响气体的逸出[20, 21]。黏接剂的使用会影响导电性,同时长时间的气体析出容易使活性物脱落影响稳定性。

本研究通过溶剂热反应在泡沫镍基底上生长Co2P4O12纳米线前驱体,产物在300 ℃下磷化2 h获得Co2P4O12/NF。通过Co2P4O12/NF和粉末状Co2P4O12对比,探究了泡沫镍基底对于Co2P4O12的电化学性能影响。同时使用Co2P4O12做阳极和阴极组装碱性电解水电解池,探究了电解池在实际使用过程中的稳定性。

1 实验 1.1 实验所需药品

六水合氯化钴(CoCl2 ·6H2O,分析纯)、无水乙醇(分析纯)、丙酮(分析纯)均从天津元立化工有限公司购买。

1.2 Co2P4O12/NF复合材料的制备

泡沫镍(NF)使用前依次经过稀盐酸、丙酮和水的清洗去除表面的氧化层。将0.295 g的CoCl2 ·6H2O和0.3 g的尿素溶解在45 mL的去离子水中,再加入5 mL无水乙醇并充分搅拌形成澄清透明的混合液。将混合液和处理后的泡沫镍加入100 mL的水热反应釜中,在140 ℃烘箱中反应10 h。产物在60 ℃下干燥过夜。在300 ℃下,以次亚磷酸钠作为磷源,在管式炉中持续通入氮气作为保护气,上述得到的前驱体退火2 h,即可得到Co2P4O12/NF。称量与Co2P4O12/NF相同大小空白泡沫镍电极,计算质量的差值得出催化剂负载量为6.5 mg ·cm-2

1.3 Co(OH)2/NF和Co2P4O12电极材料的制备

Co(OH)2/NF制备步骤与Co2P4O12/NF类似,水热后的产物不进行磷化直接干燥即可得到Co(OH)2/NF。Co2P4O12的制备也与Co2P4O12/NF类似,但水热过程中不添加NF,将得到的产物过滤、干燥、磷化,就可以得到Co2P4O12粉末样品。Co(OH)2/NF样品直接作为电极进行测试。Co2P4O12粉末电极的制备:将13 mg的Co2P4O12样品加入到2 mL异丙醇,1 mL去离子水和45 μL Nafion溶液混合液中,超声均匀,用移液枪滴加至与Co2P4O12/NF电极同等大小的泡沫镍上,晾干备用。

1.4 电极材料的表征测试

使用场发射扫描电子显微镜(SEM,S4800)和场发射透射电子显微镜(TEM,JEM-2100F)进行样品形貌表征。晶体结构通过X射线衍射仪(XRD,D8-Focus)进行表征。

1.5 电化学性能表征

本研究以碳棒作为对电极、饱和甘汞电极作为参比电极构建三电极体系。在1 mol ·L-1 KOH环境下进行线性扫描测试(LSV)、阻抗测试(EIS)和稳定性测试来表征电化学性能。LSV测试扫速为2 mV ·s-1进行测试。Tafel曲线根据公式η=blgi+a(其中η为过电位、b是Tafel斜率、a是电流密度为1 mA ·cm-2时的过电位)计算得出。EIS测试中,测试范围为0.01 Hz~100 kHz,振幅为5 mV。稳定性测试中将Co2P4O12/NF作为阴阳两极构造电解池,在15 mA ·cm-2的电流密度下记录电解槽电压的变化。

2 结果与讨论 2.1 电极材料特性表征测试 2.1.1 复合材料形貌表征

图 1是Co2P4O12/NF的形貌图。从图 1(b)(c)可以看出,Co2P4O12以纳米棒的形式生长在泡沫镍表面,纳米棒的直径约为200 nm。与图 1(a)中的光滑泡沫镍相比,图 1(b)中的结构拥有更大的比表面积,有利于更充分地与电解液接触,增加活性位点。同时纳米棒规则地生长在泡沫镍的表面,可以抑制纳米棒团聚。电流可以通过泡沫镍传递到Co2P4O12,从而增加该材料的导电性。图 1(e)图 1(f)Co2P4O12/NF样品的透射图片。图 1(e)中可以进一步证明纳米棒的直径约为200 nm。图 1(f)中可以观察到0.277 nm和0.246 nm的晶格条纹分别对应Co2P4O12的(-223)(132)晶面。上述表征证明了Co2P4O12纳米棒成功生长在泡沫镍表面。

图 1 (a) 泡沫镍的SEM图; (b)和(c)不同倍数下Co2P4O12/NF的SEM图; (d)Co2P4O12纳米棒表面的SEM图; (e)Co2P4O12纳米棒TEM图; (f)纳米棒表面晶格TEM图 Fig.1 (a) NF surface morphology SEM image; (b) and (c) SEM images of Co2P4O12/NF at different magnification; (d) SEM image of the surface of Co2P4O12 nanorods; (e) TEM images of Co2P4O12 nanorods and (f) TEM images of surface lattice of nanorods
2.1.2 复合材料XRD表征

图 2是Co2P4O12/NF的XRD衍射图。由于泡沫镍基底的峰比较强,所以通过超声得到表面样品进行测试。图 2中可以观察到14.3°、19.4°、20.8°、29.6°和30.2°存在衍射峰,这些峰分别对应Co2P4O12的(-110)、(-202)、(-112)、(-113)和(-313)晶面[22]。图谱可以很好地匹配标准卡片(JCPDS no.84.2208),这可以证明Co2P4O12成功合成。

图 2 Co2P4O12/NF的XRD图谱 Fig.2 XRD patterns of Co2P4O12/NF
2.2 Co2P4O12/NF电化学性能测试

分别测试不同样品在HER和OER过程中的电化学性能。

2.2.1 Co2P4O12/NF析氢性能测试

图 3(a)是不同样品的LSV测试图。从图 3(a)中曲线可以看出,在10 mA ·cm-2的电流密度下,Co2P4O12/NF电极的析氢过电位为122 mV。与NF、Co(OH)2和Co2P4O12电极相比,Co2P4O12/NF复合材料有着更好的析氢性能。图 3(b)是根据不同样品LSV曲线得到对应的Tafel曲线。从图 3(b)中可以看出,Co2P4O12/NF的Tafel斜率最小,反应速率最快。图 3(c)是不同样品的EIS测试,图 3(c)R1表示的电解液与电极表面的液接电阻,R2表示的是电荷转移电阻。Co2P4O12/NF电极的R1R2分别是2.2和22.8 Ω,明显低于其他3种材料,说明Co2P4O12/NF有利于电荷传递。Co2P4O12/NF与Co2P4O12相比电荷传递电阻显著减小,说明泡沫镍基底有利于材料的电荷传递。上述测试证明了Co2P4O12/NF是一种理想的析氢催化剂材料。

图 3 不同样品HER过程中(a)LSV曲线图; (b)Tafel斜率图; (c)EIS测试图 Fig.3 (a) LSV curve; (b) Tafel slope diagram; (c) EIS test diagram of different samples in the process of HER
2.2.2 Co2P4O12/NF析氧性能测试

Co2P4O12/NF的析氧性能是评判其作为双功能催化剂的一个重要标准。对Co2P4O12/NF进行OER测试。如图 4(a)所示,Co2P4O12/NF与其他3个材料相比拥有更好的析氧性能,在15 mA ·cm-2的电流密度下析氧过电位仅为334 mV。图 4(b)是根据不同样品的LSV曲线计算得到的Tafel曲线。从图 4(b)中可以看出,Co2P4O12/NF反应速率最快为215 mA ·cm-2图 4(c)是OER过程中的EIS测试,从图 4中看出Co2P4O12/NF电荷传递电阻最小(34.1 Ω)。说明在析氧过程中Co2P4O12/NF对水的吸附作用最好,OH-更容易在其表面反应。上述测试证明Co2P4O12/NF也是一种性能优异的析氧催化剂。

图 4 不同样品OER过程中(a)LSV曲线图; (b)Tafel斜率图; (c)EIS测试图 Fig.4 (a) LSV curve; (b) Tafel slope diagram; (c) EIS test diagram of different samples in the process of OER
2.2.3 Co2P4O12/NF电化学活性面积与电解池稳定性测试

电化学活性面积(ESCA)通常用来表征电极材料表面活性位点数,ESCA与Cdl电容值成正比[23, 24]Cdl电容值可以根据非法拉第区(0.1~0.2 V vs. RHE)的CV曲线计算得到。取0.15 V vs. RHE的电位下阴阳极电流JaJc,根据ΔJac=Ja-Jc可以得到不同扫速下阴阳电流差值。通过拟合不同扫速下的ΔJac可以得到1条直线,直线斜率值的一半等于Cdl[25]。根据图 5(a)所示,与Co2P4O12(11.4 mF ·cm-2)相比,Co2P4O12/NF的ES CA值(12.8 mF ·cm-2)更大,说明其有着更大的电化学活性面积,进一步证明了独特的纳米线阵列结构有利于暴露更多的活性面积。

图 5 不同样品的(a)ESCA拟合图; (b)以Co2P4O12/NF组装电解池工作稳定性测试; (c) Co2P4O12/NF在40 h测试后的SEM图; (d) Co2P4O12/NF在稳定性测试前和40 h测试后的XRD对比图 Fig.5 (a) ESCA fitting diagram of different samples; (b) stability test of Co2P4O12/NF assembly, electrolytic cell; (c) SEM of Co2P4O12/NF after 40 h test; (d) XRD comparison diagram of Co2P4O12/NF before and after 40 h test

Co2P4O12/NF拥有很好的HER和OER催化性能。以Co2P4O12/NF材料作为电解池阴阳极组装碱性电解池。图 5(b)是电解池在15 mA ·cm-2电流密度下,电解槽电压和工作时间的关系图,从图 5(b)中可以看出电解池可以在1.71 V的槽压下稳定工作40 h,其电压没有发生明显变化。图 5(c)是Co2P4O12/NF稳定工作40 h之后表面的形貌图,从中可以看出在工作过后形貌没有发生明显改变。图 5(d)是反应前后XRD的对比图,XRD图谱没有发生明显变化,说明长时间工作后物质没有改变。上述表征可以证明Co2P4O12/NF材料有着很好的稳定性。Co2P4O12/NF与已报道双功能催化剂性能对比如表 1所示,可以看到Co2P4O12/NF与这些催化剂性能相当。

表 1 Co2P4O12/NF与已报道的双功能催化剂性能对比表 Table 1 Performance comparison of Co2P4O12/NF and reported bifunctional catalysts
催化剂类型 析氢的电流密度/(mA·cm-2) 析氢对应的过电位/mV 析氧的电流密度/(mA·cm-2) 析氢对应的过电位/mV 组装电解槽的电流密度/(mA·cm-2) 电解槽槽压/V 参考文献
MoS2/Co9S8/Ni3S2/Ni 10 113 10 116 10 1.54 [28]
Co3S4@MoS2 10 136 10 280 10 1.58 [29]
Co-NC@MoC 10 99 10 347 10 1.68 [30]
Co5Mo1.0O NSs@NF 10 173 10 270 10 1.68 [31]
Co/Co9S8-MoS2 10 128 10 325 10 1.68 [32]
Co9S8@GMT 50 310 50 284 50 1.82 [33]
Cu@CoFe 10 171 10 240 10 1.68 [34]
Mo-CoP 10 118 10 317 10 1.70 [35]
Ni2CoP 10 197 10 253 10 1.68 [36]
Co2P4O12/NF 10 122 15 336 15 1.71 本文
2.3 机理分析

Co2P4O12/NF在碱性溶液中的析氢、析氧过程示意图如图 6所示。

图 6 Co2P4O12/NF电解水机理示意图 Fig.6 Schematic diagram of water electrolysis mechanism of Co2P4O12/NF

Co2P4O12/NF析氢过程Tafel斜率为83.6 mV ·dec-1,主要是通过Volmer-Heyrosky机理进行反应。

碱性溶液中Volmer过程:

$ \mathrm{H}_2 \mathrm{O}+\mathrm{e}^{-}+\mathrm{Co}=\mathrm{CoH}_{\mathrm{ads}}+\mathrm{OH}^{-} $ (1)

碱性溶液中Heyrosky过程:

$ \mathrm{CoH}_{\text {ads }}+\mathrm{H}_2 \mathrm{O}+\mathrm{e}^{-}=\mathrm{H}_2+\mathrm{OH}^{-} $ (2)

磷化物中的磷元素在反应过程中有着很强的捕获质子的能力,可以促进金属离子对于H原子的吸引,这种协同效应提升了材料的HER性能[26]。与此类似,由于带负电的磷原子被掺入到材料内部改变Co元素的电负性,促进了Co与H原子结合形成CoHads。Co2P4O12/NF Tafel斜率降低也可以证明P的掺入加速了Volmer过程。

而在析氧过程中主要通过(3)到(6)。氢氧根在电极表面形成含氧中间体,Co2P4O12中的钴元素与含氧中间体结合形成CoOx+1,2个CoOx+1反应形成O2。由于Tafel斜率为215 mV ·dec-1大于2b0(b0=2.303 RT/F=59 mV ·dec-1。当实际得到的Tafel斜率b=b0时,步骤3是速度控制步骤;当b=2b0时,步骤1是速度控制步骤)[3, 27],所以反应是由步骤1控制,氢氧根的吸附是影响反应速率的主要原因。

步骤1:

$ 2 \mathrm{OH}^{-}=2 \mathrm{OH}+2 \mathrm{e}^{-} $ (3)

步骤2:

$ 2 \mathrm{OH}+2 \mathrm{OH}^{-}=2 \mathrm{O}^{-}+2 \mathrm{H}_2 \mathrm{O} $ (4)

步骤3:

$ 2 \mathrm{O}^{-}+2 \mathrm{CoO}_x=2 \mathrm{CoO}_{x+1}+2 \mathrm{e}^{-} $ (5)

步骤4:

$ 2 \mathrm{CoO}_{x+1}=2 \mathrm{CoO}_x+\mathrm{O}_2 $ (6)
3 结论

通过溶剂热法和磷化法成功合成Co2P4O12/NF。Co2P4O12在NF表面形成独特的纳米线阵列结构。复合材料在10 mA ·cm-2电流密度下析氢过电位为122 mV,15 mA ·cm-2电流密度下析氧过电位为334 mV。以Co2P4O12/NF作为两极的电解池(1.71 V)在15 mA ·cm-2下稳定工作40 h。与没有基底的Co2P4O12对比,Co2P4O12/NF纳米线阵列有利于活性位点和电解液接触,同时有着更好的导电性,促进反应进行。实验证明了Co2P4O12/NF是一种有潜力的双功能催化剂。

参考文献
[1]
JARAMILLO T F, JØRGENSEN K P, BONDE J, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science, 2007, 317(5834): 100-102. DOI:10.1126/science.1141483
[2]
KIBSGAARD J, CHEN Z, REINECKE B N, et al. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis[J]. Nature Materials, 2012, 11(11): 963-969. DOI:10.1038/nmat3439
[3]
HU C, ZHANG L, GONG J. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting[J]. Energy & Environmental Science, 2019, 12(9): 2620-2645.
[4]
CONWAY B E, TILAK B V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H[J]. Electrochimica Acta, 2002, 47(22/23): 3571-3594.
[5]
CHEREVKO S, GEIGER S, KASIAN O, et al. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability[J]. Catalysis Today, 2016, 262: 170-180. DOI:10.1016/j.cattod.2015.08.014
[6]
ZHANG J, WANG T, POHL D, et al. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity[J]. Angewandte Chemie International Edition, 2016, 55(23): 6702-6707. DOI:10.1002/anie.201602237
[7]
PENG S, LI L, ZHANG J, et al. Engineering Co9S8/WS2 array films as bifunctional electrocatalysts for efficient water splitting[J]. Journal of Materials Chemistry A, 2017, 5(44): 23361-23368. DOI:10.1039/C7TA08518D
[8]
WANG D, ZHANG X, BAO S, et al. Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution[J]. Journal of Materials Chemistry A, 2017, 5(6): 2681-2688. DOI:10.1039/C6TA09409K
[9]
LIU T, MA X, LIU D, et al. Mn doping of CoP nanosheets array: An efficient electrocatalyst for hydrogen evolution reaction with enhanced activity at all pH values[J]. ACS Catalysis, 2017, 7(1): 98-102. DOI:10.1021/acscatal.6b02849
[10]
LI Y, ZHANG H, JIANG M, et al. 3D self-supported Fe-doped Ni2P nanosheet arrays as bifunctional catalysts for overall water splitting[J]. Advanced Functional Materials, 2017. DOI:10.1002/adfm.201702513
[11]
WANG X, CHEN H, XU Y, et al. Self-supported NiMoP2 nanowires on carbon cloth as an efficient and durable electrocatalyst for overall water splitting[J]. Journal of Materials Chemistry A, 2017, 5(15): 7191-7199. DOI:10.1039/C6TA11188B
[12]
LI M, ZHU Y, WANG H, et al. Ni strongly coupled with Mo2C encapsulated in nitrogen-doped carbon nanofibers as robust bifunctional catalyst for overall water splitting[J]. Advanced Energy Materials, 2019. DOI:10.1002/aenm.201803185
[13]
YANG S, WANG Y, ZHANG H, et al. Unique three-dimensional Mo2C@MoS2 heterojunction nanostructure with S vacancies as outstanding all-pH range electrocatalyst for hydrogen evolution[J]. Journal of Catalysis, 2019, 371: 20-26. DOI:10.1016/j.jcat.2019.01.020
[14]
GENG S, YANG W, YU Y. Fabrication of NiC/MoC/NiMoO4 heterostructured nanorod arrays as stable bifunctional electrocatalysts for efficient overall water splitting[J]. Chemistry, an Asian Journal, 2019, 14(7): 1013-1020. DOI:10.1002/asia.201801871
[15]
WU A, XIE Y, MA H, et al. Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting[J]. Nano Energy, 2018, 44: 353-363. DOI:10.1016/j.nanoen.2017.11.045
[16]
ZHANG B, XIAO C, XIE S, et al. Iron-nickel nitride nanostructures in situ grown on surface-redox-etching nickel foam: Efficient and ultrasustainable electrocatalysts for overall water splitting[J]. Chemistry of Materials, 2016, 28(19): 6934-6941. DOI:10.1021/acs.chemmater.6b02610
[17]
JIN H, WANG J, SU D, et al. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution[J]. Journal of the American Chemical Society, 2015, 137(7): 2688-2694. DOI:10.1021/ja5127165
[18]
PATIL D R, KOTESWARARAO B, BEGARI K, et al. Cobalt cyclotetraphosphate (Co2P4O12): A new high-performance electrode material for supercapacitors[J]. ACS Applied Energy Materials, 2019, 2(4): 2972-2981. DOI:10.1021/acsaem.9b00447
[19]
LV C, XU S, YANG Q, et al. Promoting electrocatalytic activity of cobalt cyclotetraphosphate in full water splitting by titanium-oxide-accelerated surface reconstruction[J]. Journal of Materials Chemistry A, 2019, 7(20): 12457-12467. DOI:10.1039/C9TA02442E
[20]
DUAN J, CHEN S, VASILEFF A, et al. Anion and cation modulation in metal compounds for bifunctional overall water splitting[J]. ACS Nano, 2016, 10(9): 8738-8745. DOI:10.1021/acsnano.6b04252
[21]
HUANG Z, CHEN Z, CHEN Z, et al. Ni12P5 nanoparticles as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis[J]. ACS Nano, 2014, 8(8): 8121-8129. DOI:10.1021/nn5022204
[22]
OLBERTZ A, STACHEL D, SVOBODA I, et al. Redetermination of the crystal structures of nickel cyclotetraphosphate, Ni2P4O12 and of cobalt cyclotetraphosphate, Co2P4O12[J]. Zeitschrift Fur Kristallographie-New Crystal Structures, 1998, 213(2): 241-242.
[23]
LUKOWSKI M A, DANIEL A S, MENG F, et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets[J]. Journal of the American Chemical Society, 2013, 135(28): 10274-10277. DOI:10.1021/ja404523s
[24]
YANG Y, LUN Z, XIA G, et al. Non-precious alloy encapsulated in nitrogen-doped graphene layers derived from MOFs as an active and durable hydrogen evolution reaction catalyst[J]. Energy & Environmental Science, 2015, 8(12): 3563-3571.
[25]
ZHANG W, LIU Y, ZHOU H, et al. A high-performance electrocatalyst of CoMoP@NF nanosheet arrays for hydrogen evolution in alkaline solution[J]. Journal of Materials Science, 2019, 54(17): 11585-11595. DOI:10.1007/s10853-019-03704-4
[26]
Wu C, Yang Y, Dong D, et al. In situ coupling of CoP polyhedrons and carbon nanotubes as highly efficient hydrogen evolution reaction electrocatalyst[J]. Small Small, 2017. DOI:10.1002/small.201602873
[27]
FABBRI E, HABEREDER A, WALTAR K, et al. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction[J]. Catal Sci Technol, 2014, 4(11): 3800-3821. DOI:10.1039/C4CY00669K
[28]
YANG Y, YAO H, YU Z, et al. Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range[J]. Journal of the American Chemical Society, 2019, 141(26): 10417-10430. DOI:10.1021/jacs.9b04492
[29]
GUO Y, TANG J, WANG Z, et al. Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting[J]. Nano Energy, 2018, 47: 494-502. DOI:10.1016/j.nanoen.2018.03.012
[30]
LIANG Q, JIN H, WANG Z, et al. Metal-organic frameworks derived reverse-encapsulation Co-NC@Mo2C complex for efficient overall water splitting[J]. Nano Energy, 2019, 57: 746-752. DOI:10.1016/j.nanoen.2018.12.060
[31]
ZHANG Y, SHAO Q, LONG S, et al. Cobalt-molybdenum nanosheet arrays as highly efficient and stable earth-abundant electrocatalysts for overall water splitting[J]. Nano Energy, 2018, 45: 448-455. DOI:10.1016/j.nanoen.2018.01.022
[32]
LIN Q, LIANG J, LIU J, et al. Hierarchical amorphous carbon-coated Co/Co9S8 nanoparticles on MoS2 toward synergetic electrocatalytic water splitting[J]. Industrial & Engineering Chemistry Research, 2019, 58(51): 23093-23098.
[33]
GUO M, LIU Y, DONG S, et al. Co9S8-catalyzed growth of thin-walled graphite microtubes for robust, efficient overall water splitting[J]. ChemSusChem, 2018, 11(23): 4150-4155. DOI:10.1002/cssc.201802055
[34]
YU L, ZHOU H, SUN J, et al. Hierarchical Cu@CoFe layered double hydroxide core-shell nanoarchitectures as bifunctional electrocatalysts for efficient overall water splitting[J]. Nano Energy, 2017, 41: 327-336. DOI:10.1016/j.nanoen.2017.09.045
[35]
LI L, GUO Y, WANG X, et al. Ultraeven Mo-doped CoP nanocrystals as bifunctional electrocatalyst for efficient overall water splitting[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2021, 37(19): 5986-5992. DOI:10.1021/acs.langmuir.1c00524
[36]
KONG T, SUI Y, QI J, et al. In situ transformation of sea urchin-like NixCoyP@NF as an efficient bifunctional electrocatalyst for overall water splitting[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(2): 1951-1961. DOI:10.1007/s10854-020-04963-7