[1] ZHAO G, WANG X, NEGNEVITSKY M, et al. A review of air-cooling battery thermal management systems for electric and hybrid electric vehicles[J]. Journal of Power Sources, 2021, doi: 10.1016/j.jpowsour.2021. 230001 [2] NIE Y, ZHANG G, DUAN H, et al. Trends in energy policy coordination research on supporting low-carbon energy development[J]. Environmental Impact Assessment Review, 2022, 97: 106903 [3] WINTER M, BARNETT B, XU K. Before Li ion batteries[J]. Chemical Reviews, 2018, 118(23): 11433-11456 [4] LI Z, SAMI I, YANG J, et al. Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium-sulfur batteries[J]. Nature Energy, 2023, 8(1): 84-93 [5] CHEN L, SUN Y, WEI X, et al. Dual-functional V2 C MXene assembly in facilitating sulfur evolution kinetics and Li-ion sieving toward practical lithium-sulfur batteries[J]. Advanced Materials, 2023, 35(26): e2300771 [6] JIN Y, LIU K, LANG J, et al. High-energy-density solid-electrolyte-based liquid Li-S and Li-Se batteries[J]. Joule, 2020, 4(1): 262-274 [7] YU Z, HUANG X, ZHENG M, et al. Self-assembled macrocyclic copper complex enables homogeneous catalysis for high-loading lithium-sulfur batteries[J]. Advanced Materials, 2023, doi: 10.1002/adma.202300861 [8] LI L, BASU S, WANG Y, et al. Self-heating-induced healing of lithium dendrites[J]. Science, 2018, 359(6383): 1513-1516 [9] YAO W, XU J, MA L, et al. Recent progress for concurrent realization of shuttle-inhibition and dendrite-free lithium-sulfur batteries[J]. Advanced Materials, 2023, doi: 10.1002/adma.202212116 [10] WANG T, HE J, ZHU Z, et al. Heterostructures regulating lithium polysulfides for advanced lithium-sulfur batteries[J]. Advanced Materials, 2023: e2303520 [11] ZHANG M, CHEN W, XUE L, et al. Adsorption-catalysis design in the lithium-sulfur battery[J]. Advanced Energy Materials, 2020, doi: 10.1002/aenm.201903008 [12] LI J, NIU Z, GUO C, et al. Catalyzing the polysulfide conversion for promoting lithium sulfur battery performances: A review[J]. Journal of Energy Chemistry, 2021, 54: 434-451 [13] DING H, ZHANG Q, LIU Z, et al. TiO2 quantum dots decorated multi-walled carbon nanotubes as the multifunctional separator for highly stable lithium sulfur batteries[J]. Electrochimica Acta, 2018, 284: 314-320 [14] SUN Z, WANG T, ZHANG Y, et al. Boosting the electrochemical performance of lithium/sulfur batteries with the carbon nanotube/Fe3O4 coated by carbon modified separator[J]. Electrochimica Acta, 2019, 327: 134843 [15] YU X, CHEN W, CAI J, et al. Oxygen vacancy-rich MnO nanoflakes/N-doped carbon nanotubes modified separator enabling chemisorption and catalytic conversion of polysulfides for Li-S batteries[J]. Journal of Colloid and Interface Science, 2022, 610: 407-417 [16] HU S, YI M, WU H, et al. Ionic-liquid-assisted synthesis of N, F, and B Co-doped CoFe2O4-x on multiwalled carbon nanotubes with enriched oxygen vacancies for Li-S batteries[J]. Advanced Functional Materials, 2022, doi: 10.1002/adfm.202111084 [17] SUN W, LU Y, HUANG Y. An effective sulfur conversion catalyst based on MnCo2O4.5 modified graphitized carbon nitride nanosheets for high-performance Li-S batteries[J]. Journal of Materials Chemistry A, 2021, 9(37): 21184-21196 [18] PENG J, ZHU J, WANG Y, et al. Thermotolerant and Li2Sn-trapped/converted separators enabled by NiFe2O4 quantum dots/g-C3N4 nanofiber interlayers: Toward more practical Li-S batteries[J]. Materials Chemistry Frontiers, 2022, 6(15): 2034-2041 [19] CHENG H, ZHANG S, LI S, et al. Engineering Fe and V coordinated bimetallic oxide nanocatalyst enables enhanced polysulfides mediation for high energy density Li-S battery[J]. Small, 2022, doi: 10.1002/smll.202202557 [20] MA L, YUE B, LI X, et al. NiCo2O4@PPy concurrently as cathode host material and interlayer for high-rate and long-cycle lithium sulfur batteries[J]. Ceramics International, 2022, 48(15): 22287-22296 [21] ZHANG J, CHENG Y, CHEN H, et al. MoP quantum dot-modified N, P-carbon nanotubes as a multifunctional separator coating for high-performance lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(14): 16289-16299 [22] WANG X, DENG N, LIU Y, et al. Porous and heterostructured molybdenum-based phosphide and oxide nanobelts assisted by the structural engineering to enhance polysulfide anchoring and conversion for lithium-sulfur batteries[J]. Chemical Engineering Journal, 2022, 450: 138191 [23] WANG X, DENG N, JU J, et al. Flower-like heterostructured MoP-MoS2 hierarchical nanoreactor enabling effective anchoring for LiPS and enhanced kinetics for high performance Li-S batteries[J]. Journal of Membrane Science, 2022, 642: 120003 [24] WU Z, CHEN S, WANG L, et al. Implanting nickel and cobalt phosphide into well-defined carbon nanocages: A synergistic adsorption-electrocatalysis separator mediator for durable high-power Li-S batteries[J]. Energy Storage Materials, 2021, 38: 381-388 [25] YU S, CAI W, CHEN L, et al. Recent advances of metal phosphides for Li-S chemistry[J]. Journal of Energy Chemistry, 2021, 55: 533-548 [26] SU H, LU L, YANG M, et al. Decorating CoSe2 on N-doped carbon nanotubes as catalysts and efficient polysulfides traps for Li-S batteries[J]. Chemical Engineering Journal, 2022, 429: 132167 [27] 王伟. 过渡金属硒化物/MXene双功能催化剂的电子结构调控及锂硫电池性能和催化机理研究[D]. 广州: 广东工业大学, 2022 WANG Wei. Electronic structure regulation of transition metal selenide/MXene bifunctional catalyst and study on performance and catalytic mechanism of lithium-sulfur battery[D]. Guangzhou: Guangdong University of Technology, 2022(in Chinese) [28] YU H, ZHANG F, BAO S, et al. Interlayer-expanded MoSe2 nanotubes as multifunctional separator coating for high-performance lithium-sulfur battery[J]. Materials Letters, 2023, 331: 133481 [29] JIANG X, ZHANG S, ZOU B, et al. Electrospun CoSe@NC nanofiber membrane as an effective polysulfides adsorption-catalysis interlayer for Li-S batteries[J]. Chemical Engineering Journal, 2022, 430: 131911 [30] CAO Z, WANG Y, GUO J, et al. CoSe-catalyzed growth of graphene sheath to construct CNF@graphene-CoSe cable/sheath heterostructure for high-performance Lithium-Sulfur batteries[J]. Carbon, 2023, 204: 102-111 [31] WANG B, SUN D, REN Y, et al. MOFs derived ZnSe/N-doped carbon nanosheets as multifunctional interlayers for ultralong-life lithium-sulfur batteries[J]. Journal of Materials Science & Technology, 2022, 125: 97-104 [32] WU J, YE T, WANG Y, et al. Understanding the catalytic kinetics of polysulfide redox reactions on transition metal compounds in Li-S batteries[J]. ACS Nano, 2022, 16(10): 15734-15759 [33] LI M, YANG D, BIENDICHO J J, et al. Enhanced polysulfide conversion with highly conductive and electrocatalytic iodine-doped bismuth selenide nanosheets in lithium-sulfur batteries[J]. Advanced Functional Materials, 2022, doi: 10.1002/adfm.202200529 [34] XU H, HU R, ZHANG Y, et al. Nano high-entropy alloy with strong affinity driving fast polysulfide conversion towards stable lithium sulfur batteries[J]. Energy Storage Materials, 2021, 43: 212-220 [35] SUN L, ZHANG W, FU J, et al. Highly active rare earth sulfur oxides used for membrane modification of lithium sulfur batteries[J]. Chemical Engineering Journal, 2023, 457: 141240 [36] ZHANG M, PENG L, YUAN Q, et al. A multifunctional separator modified using Y2O3/Co3O4 heterostructures boosting polysulfide catalytic conversion for advanced Li-S batteries[J]. Sustainable Energy & Fuels, 2022, 6(13): 3187-3194 [37] CHEN C, ZHANG M, CHEN Q, et al. Recent progress in framework materials for high-performance lithium-sulfur batteries[J]. The Chemical Record, 2023, doi: 10.1002/tcr.202200278 [38] YI F, ZHANG R, WANG H, et al. Metal-organic frameworks and their composites: Synthesis and electrochemical applications[J]. Small Methods, 2017, doi: 10.1002/smtd.201700187 [39] YAGHI O M, LI H. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J]. Journal of the American Chemical Society, 1995, 117(41): 10401-10402 [40] QIU T, LIANG Z, GUO W, et al. Metal-organic framework-based materials for energy conversion and storage[J]. ACS Energy Letters, 2020, 5(2): 520-532 [41] LIANG Z, QU C, GUO W, et al. Metal-organic frameworks: Pristine metal-organic frameworks and their composites for energy storage and conversion (adv. mater. 37/2018) doi: 10.1002/adma.201702891 [42] ZHOU C, CHEN M, DONG C, et al. The continuous efficient conversion and directional deposition of lithium (poly)sulfides enabled by bimetallic site regulation[J]. Nano Energy, 2022, 98: 107332 [43] CHEN H, XIAO Y, CHEN C, et al. Conductive MOF-modified separator for mitigating the shuttle effect of lithium-sulfur battery through a filtration method[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11459-11465 [44] ZHANG L, HOU Y. The rise and development of MOF-based materials for metal-chalcogen batteries: Current status, challenges, and prospects[J]. Advanced Energy Materials, 2023, doi: 10.1002/aenm.202204378 [45] FENG P, HOU W, BAI Z, et al. Ultrathin two-dimensional bimetal NiCo-based MOF nanosheets as ultralight interlayer in lithium-sulfur batteries[J]. Chinese Chemical Letters, 2023, 34(4): 107427 [46] WU T, YANG T, ZHANG J, et al. CoB and BN composites enabling integrated adsorption/catalysis to polysulfides for inhibiting shuttle-effect in Li-S batteries[J]. Journal of Energy Chemistry, 2021, 59: 220-228 [47] ZHONG Y, LIN F, WANG M, et al. Metal organic framework derivative improving lithium metal anode cycling[J]. Advanced Functional Materials, 2020, doi: 10.1002/adfm.201907579 [48] ZHAO X, WU Q, WU F, et al. A sandwich-structured bifunctional separator for durable and stable lithium-sulfur batteries[J]. Journal of Electroanalytical Chemistry, 2023, 939: 117474 [49] WU H, YANG Y, JIA W, et al. Defect-engineered bilayer MOFs separator for high stability lithium-sulfur batteries[J]. Journal of Alloys and Compounds, 2021, 874: 159917 [50] DANG B, GAO D, LUO Y, et al. Bifunctional design of cerium-based metal-organic framework-808 membrane modified separator for polysulfide shuttling and dendrite growth inhibition in lithium-sulfur batteries[J]. Journal of Energy Storage, 2022, 52: 104981 [51] CÔTÉ A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170 [52] WANG Y, YANG X, LI P, et al. Covalent organic frameworks for separator modification of lithium-sulfur batteries[J]. Macromolecular Rapid Communications, 2023, doi:10.1002/marc.202200760 [53] WANG R, CAI Q, ZHU Y, et al. An n-type benzobisthiadiazole-based covalent organic framework with narrowed bandgap and enhanced electroactivity[J]. Chemistry of Materials, 2021, 33(10): 3566-3574 [54] DU Y, YANG H, WHITELEY J M, et al. Ionic covalent organic frameworks with spiroborate linkage[J]. Angewandte Chemie (International Ed in English), 2016, 55(5): 1737-1741 [55] LI P, LV H, LI Z, et al. The electrostatic attraction and catalytic effect enabled by ionic-covalent organic nanosheets on MXene for separator modification of lithium-sulfur batteries[J]. Advanced Materials, 2021, doi: 10.1002/adma.202007803 [56] CAO Y, WU H, LI G, et al. Ion selective covalent organic framework enabling enhanced electrochemical performance of lithium-sulfur batteries[J]. Nano Letters, 2021, 21(7): 2997-3006 [57] XU J, AN S, SONG X, et al. Towards high performance Li-S batteries via sulfonate-rich COF-modified separator[J]. Advanced Materials (Deerfield Beach, Fla), 2021, 33(49): e2105178 [58] ZHANG K, LI X, MA L, et al. Fluorinated covalent organic framework-based nanofluidic interface for robust lithium-sulfur batteries[J]. ACS Nano, 2023, 17(3): 2901-2911 [59] XU J, TANG W, YANG C, et al. A highly conductive COF@CNT electrocatalyst boosting polysulfide conversion for Li-S chemistry[J]. ACS Energy Letters, 2021, 6(9): 3053-3062 [60] SUN K, WANG C, DONG Y, et al. Ion-selective covalent organic framework membranes as a catalytic polysulfide trap to arrest the redox shuttle effect in lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(3): 4079-4090 [61] HAN L, YANG Y, SUN S, et al. Polydopamine-assisted in situ formation of a covalent organic framework on single-walled carbon nanotubes to multifunctionalize separators for advanced lithium-sulfur batteries[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(23): 8431-8441 [62] ZHU D, XU G, BARNES M, et al. Covalent organic frameworks for batteries[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202100505 [63] ZHANG Y, GUO C, ZHOU J, et al. Anisotropically hybridized porous crystalline Li-S battery separators[J]. Small, 2023, doi: 10.1002/smll.202206616 [64] KIM A, OH S H, ADHIKARI A, et al. Recent advances in modified commercial separators for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2023, 11(15): 7833-7866 [65] HAREENDRAKRISHNAKUMAR H, CHULLIYOTE R, JOSEPH M G, et al. Sulfonic groups stemmed ionic shield for polysulfides towards high performance Li-S batteries[J]. Electrochimica Acta, 2019, doi: 10.1016/j.electacta.2019.134697 [66] HE Y, WU S, LI Q, et al. Designing a multifunctional separator for high-performance Li-S batteries at elevated temperature[J]. Small, 2019, doi: 10.1002/smll.201904332 [67] DIAO W, XIE D, LI D, et al. Ion sieve membrane: Homogenizing Li+ flux and restricting polysulfides migration enables long life and highly stable Li-S battery[J]. Journal of Colloid and Interface Science, 2022, 627: 730-738 [68] YIN Y, ZHAO W, WANG A, et al. Cation-selective dual-functional separator as an effective polysulfide barrier and a Li dendrite inhibitor for lithium-sulfur batteries[J]. ACS Applied Energy Materials, 2020, 3(12): 11855-11862 [69] LI Y, GUO S. Material design and structure optimization for rechargeable lithium-sulfur batteries[J]. Matter, 2021, 4(4): 1142-1188 [70] ZHU Y, ZHANG Y, JIN S, et al. Toward safe and high-performance lithium-sulfur batteries via polyimide nanosheets-modified separator[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(4): 1434-1447 [71] XIE P, ZHANG B, ZHOU Y, et al. A dual-coated multifunctional separator for the high-performance lithium-sulfur batteries[J]. Electrochimica Acta, 2021, 395: 139181 [72] CHEN X, ZHAO C, YANG K, et al. Conducting polymers meet lithium-sulfur batteries: Progress, challenges, and perspectives[J]. Energy & Environmental Materials, 2023, doi: 10.1002/eem2.12483 [73] LI Y, WANG W, LIU X, et al. Engineering stable electrode-separator interfaces with ultrathin conductive polymer layer for high-energy-density Li-S batteries[J]. Energy Storage Materials, 2019, 23: 261-268 [74] JO H, CHO Y, YOO T, et al. Polyaniline-encapsulated hollow Co-Fe Prussian blue analogue nanocubes modified on a polypropylene separator to improve the performance of lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(40): 47593-47602 [75] SHI Q, YANG C, PEI H, et al. Layer-by-layer self-assembled covalent triazine framework/electrical conductive polymer functional separator for Li-S battery[J]. Chemical Engineering Journal, 2021, 404: 127044 [76] HOLTSTIEGE F, BÄRMANN P, NÖLLE R, et al. Pre-lithiation strategies for rechargeable energy storage technologies: Concepts, promises and challenges[J]. Batteries, 2018, 4(1): 4 [77] ZHANG J, CHEN M, SI Y, et al. LiPAA with short-chain anion facilitating Li2Sx (x≤4) reduction in lean-electrolyte lithium-sulfur battery[J]. Energy & Environmental Materials, 2022, 5(3): 877-882 [78] HUANG Q, CHEN M, HUANG Z, et al. Redox promotion by prelithiation modification of the separator in lithium-sulfur batteries[J]. The Journal of Physical Chemistry C, 2023, 127(8): 4006-4014 [79] YUAN C, YANG X, ZENG P, et al. Recent progress of functional separators with catalytic effects for high-performance lithium-sulfur batteries[J]. Nano Energy, 2021, 84: 105928
|