[1] ZHENG Y, YAO Y, OU J, et al. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures[J]. Chemical Society Reviews, 2020, 49(23): 8790-8839 [2] 马华, 从长杰, 王驰伟. 储能用锂离子动力电池研究进展[J]. 化学工业与工程, 2014, 31(3):26-33 MA Hua, CONG Changjie, WANG Chiwei. Research progress on lithium-ion batteries for energy storage application[J]. Chemical Industry and Engineering, 2014, 31(3):26-33(in Chinese) [3] 陈立坤, 胡懿, 马家宾, 等. Li+电池固态聚合物电解质研究进展[J]. 化学工业与工程, 2020, 37(1): 2-16 CHEN Likun, HU Yi, MA Jiabin, et al. Research progress of solid polymer electrolytes for lithium-ion batteries[J]. Chemical Industry and Engineering, 2020, 37(1): 2-16(in Chinese) [4] HE L, SUN Q, CHEN C, et al. Failure mechanism and interface engineering for NASICON-structured all-solid-state lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(23): 20895-20904 [5] 许卓, 郑莉莉, 陈兵, 等. 固态电池复合电解质研究综述[J]. 储能科学与技术, 2021, 10(6): 2117-2126 XU Zhuo, ZHENG Lili, CHEN Bing, et al. Overview of research on composite electrolytes for solid-state batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2117-2126(in Chinese) [6] ZHANG Q, CAO D, MA Y, et al. Sulfide-based solid-state electrolytes: Synthesis, stability, and potential for all-solid-state batteries[J]. Advanced Materials, 2019, 31(44): e1901131 [7] LEE J E, PARK K H, KIM J C, et al. Universal solution synthesis of sulfide solid electrolytes using alkahest for all-solid-state batteries[J]. Advanced Materials, 2022, 34(16): 2200083 [8] RAJAGOPALAN R, ZHANG Z, TANG Y, et al. Understanding crystal structures, ion diffusion mechanisms and sodium storage behaviors of NASICON materials[J]. Energy Storage Materials, 2021, 34: 171-193 [9] JIAN Z, HU Y, JI X, et al. NASICON-structured materials for energy storage[J]. Advanced Materials, 2017, 29(20): 1601925 [10] FANG H, JENA P. Argyrodite-type advanced lithium conductors and transport mechanisms beyond paddle-wheel effect[J]. Nature Communications, 2022, 13(1): 1-11 [11] ZHENG N, ZHANG C, LV Y, et al. Low-temperature synthesis of lithium lanthanum titanate/carbon nanowires for fast-charging Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11330-11338 [12] QI H, XIE A, ZUO R. Local structure engineered lead-free ferroic dielectrics for superior energy-storage capacitors: A review[J]. Energy Storage Materials, 2022, 45: 541-567 [13] ABOUALI S, YIM C H, MERATI A, et al. Garnet-based solid-state Li batteries: From materials design to battery architecture[J]. ACS Energy Letters, 2021, 6(5): 1920-1941 [14] CHEN S, NIE Z, TIAN F, et al. The influence of surface chemistry on critical current density for garnet electrolyte[J]. Advanced Functional Materials, 2022, 32(23): 2113318 [15] FENG J, WANG L, CHEN Y, et al. PEO based polymer-ceramic hybrid solid electrolytes: A review[J]. Nano Convergence, 2021, 8(1): 2 [16] CHOO Y, HALAT D M, VILLALUENGA I, et al. Diffusion and migration in polymer electrolytes[J]. Progress in Polymer Science, 2020, 103: 101220 [17] WU Y, LI Y, WANG Y, et al. Advances and prospects of PVDF based polymer electrolytes[J]. Journal of Energy Chemistry, 2022, 64: 62-84 [18] ZHOU D, HE Y, LIU R, et al. In situ synthesis of a hierarchical all-solid-state electrolyte based on nitrile materials for high-performance lithium-ion batteries[J]. Advanced Energy Materials, 2015, 5(15): 1500353 [19] YAO Y, WANG X, DONG C, et al. Constructing effective interface for room-temperature beta-Al2O3 based sodium metal batteries[J]. Journal of Power Sources, 2022, 523: 231034 [20] YANG H, LIU Q, WANG Y, et al. An interlayer containing dissociated LiNO3 with fast release speed for stable lithium metal batteries with 400 Wh·kg-1 energy density[J]. Small, 2022, 18(25): 2202349 [21] JIANG Y, XU C, XU K, et al. Surface modification and structure constructing for improving the lithium ion transport properties of PVDF based solid electrolytes[J]. Chemical Engineering Journal, 2022, 442: 136245 [22] ZHU F, ISLAM M S, ZHOU L, et al. Single-atom-layer traps in a solid electrolyte for lithium batteries[J]. Nature Communications, 2020, 11(1): 1-9 [23] XIA W, ZHAO Y, ZHAO F, et al. Antiperovskite electrolytes for solid-state batteries[J]. Chemical Reviews, 2022, 122(3): 3763-3819 [24] SU H, JIANG Z, LIU Y, et al. Recent progress of sulfide electrolytes for all-solid-state lithium batteries[J]. Energy Materials, 2022 [25] ZHU J, ZHAO J, XIANG Y, et al. Chemomechanical failure mechanism study in NASICON-type Li1.3Al0.3Ti1.7(PO4)3 solid-state lithium batteries[J]. Chemistry of Materials, 2020, 32(12): 4998-5008 [26] YANG L, TAO X, HUANG X, et al. Efficient mutual-compensating Li-loss strategy toward highly conductive garnet ceramics for Li-metal solid-state batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(47): 56054-56063 [27] LV R, KOU W, GUO S, et al. Preparing two-dimensional ordered Li0.33La0.557TiO3 crystal in interlayer channel of thin laminar inorganic solid-state electrolyte towards ultrafast Li+ transfer[J]. Angewandte Chemie International Edition, 2022, 61(7) [28] BRAGA M H, FERREIRA J A, STOCKHAUSEN V, et al. Novel Li3ClO based glasses with superionic properties for lithium batteries[J]. Journal of Materials Chemistry A, 2014, 2(15): 5470-5480 [29] LIU Y, PENG H, SU H, et al. Ultrafast synthesis of I-rich lithium argyrodite glass-ceramic electrolyte with high ionic conductivity[J]. Advanced Materials, 2022, 34(3): 2107346 [30] WANG G, LIU H, LIANG Y, et al. Composite polymer electrolyte with three-dimensional ion transport channels constructed by NaCl template for solid-state lithium metal batteries[J]. Energy Storage Materials, 2022, 45: 1212-1219 [31] LI J, ZHU K, WANG J, et al. Optimisation of conductivity of PEO/PVDF-based solid polymer electrolytes in all-solid-state Li-ion batteries[J]. Materials Technology, 2022, 37(4): 240-247 [32] ZHOU W, WANG Z, PU Y, et al. Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries[J]. Advanced Materials, 2019, 31(4): 1805574 [33] JIE J, LIU Y, CONG L, et al. High-performance PVDF-HFP based gel polymer electrolyte with a safe solvent in Li metal polymer battery[J]. Journal of Energy Chemistry, 2020, 49: 80-88 [34] GUO Q, XU F, SHEN L, et al. Poly(ethylene glycol) brush on Li6.4La3Zr1.4Ta0.6O12 towards intimate interfacial compatibility in composite polymer electrolyte for flexible all-solid-state lithium metal batteries[J]. Journal of Power Sources, 2021, 498: 229934 [35] ZHANG X, LIU T, ZHANG S, et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes[J]. Journal of the American Chemical Society, 2017, 139(39): 13779-13785 [36] LI B, SU Q, YU L, et al. Li0.35La0.55TiO3 nanofibers enhanced poly(vinylidene fluoride)-based composite polymer electrolytes for all-solid-state batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(45): 42206-42213 [37] LI Y, ZHANG W, DOU Q, et al. Li7La3Zr2O12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries[J]. Journal of Materials Chemistry A, 2019, 7(7): 3391-3398 [38] 陶祖贻, 杨更亮. Nernst-Planck方程和离子交换反应动力学[J]. 离子交换与吸附, 1990, 6(2): 137-145 TAO Zuyi, YANG Gengliang. Nernst Planck equation and ion exchange reaction kinetics [J] Ion exchange and adsorption, 1990, 6 (2): 137-145(in Chinese) [39] ROOIJ D. Electrochemical methods: Fundamentals and applications[J]. Anti-Corrosion Methods and Materials, 2003, 50(5) [40] ZHAO Q, STALIN S, ZHAO C, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nature Reviews Materials, 2020, 5(3): 229-252 [41] ZHANG B, TAN R, YANG L, et al. Mechanisms and properties of ion-transport in inorganic solid electrolytes[J]. Energy Storage Materials, 2018, 10: 139-159 [42] YANG H, WU N. Ionic conductivity and ion transport mechanisms of solid-state lithium-ion battery electrolytes: A review[J]. Energy Science & Engineering, 2022, 10(5): 1643-1671 [43] NODA Y, NAKANO K, TAKEDA H, et al. Computational and experimental investigation of the electrochemical stability and Li-ion conduction mechanism of LiZr2(PO4)3[J]. Chemistry of Materials, 2017, 29(21): 8983-8991 [44] ZHANG Z, NAZAR L F. Exploiting the paddle-wheel mechanism for the design of fast ion conductors[J]. Nature Reviews Materials, 2022, 7(5): 389-405 [45] WANG Y, RICHARDS W D, ONG S P, et al. Design principles for solid-state lithium superionic conductors[J]. Nature Materials, 2015, 14(10): 1026-1031 [46] HANGHOFER I, GADERMAIER B, WILKENING H M R. Fast rotational dynamics in argyrodite-type Li6PS5X (X: Cl, Br, I) as seen by 31P nuclear magnetic relaxation—On cation-anion coupled transport in thiophosphates[J]. Chemistry of Materials, 2019, 31(12): 4591-4597 [47] BAKTASH A, DEMIR B, YUAN Q, et al. Effect of defects and defect distribution on Li-diffusion and elastic properties of anti-perovskite Li3OCl solid electrolyte[J]. Energy Storage Materials, 2021, 41: 614-622 [48] EMLY A, KIOUPAKIS E, VAN DER VEN A. Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors[J]. Chemistry of Materials, 2013, 25(23): 4663-4670 [49] GUO Y, WU S, HE Y, et al. Solid-state lithium batteries: Safety and prospects[J]. eScience, 2022, 2(2): 138-163 [50] RAMZY A, THANGADURAI V. Tailor-made development of fast Li ion conducting garnet-like solid electrolytes[J]. ACS Applied Materials & Interfaces, 2010, 2(2): 385-390 [51] HAN J, ZHU J, LI Y, et al. Experimental visualization of lithium conduction pathways in garnet-type Li7La3Zr2O12[J]. Chemical Communications, 2012, 48(79): 9840-9842 [52] JR D, BALSARA N P. Polymer electrolytes[J]. Annual Review of Materials Research, 2013, 43: 503-525 [53] BROOKS D J, MERINOV B V, GODDARD W A III, et al. Atomistic description of ionic diffusion in PEO-LiTFSI: Effect of temperature, molecular weight, and ionic concentration[J]. Macromolecules, 2018, 51(21): 8987-8995 [54] MENG N, LIAN F, CUI G. Macromolecular design of lithium conductive polymer as electrolyte for solid-state lithium batteries[J]. Small, 2021, 17(3): 2005762 [55] CROCE F, APPETECCHI G B, PERSI L, et al. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature, 1998, 394(6692): 456-458 [56] MENG N, ZHU X, LIAN F. Particles in composite polymer electrolyte for solid-state lithium batteries: A review[J]. Particuology, 2022, 60: 14-36 [57] FAN L, HE H, NAN C. Tailoring inorganic-polymer composites for the mass production of solid-state batteries[J]. Nature Reviews Materials, 2021, 6(11): 1003-1019 [58] ZHENG J, TANG M, HU Y. Lithium ion pathway within Li7La3Zr2O2-polyethylene oxide composite electrolytes[J]. Angewandte Chemie, 2016, 128(40): 12726-12730 [59] CHEN L, LI Y, LI S, et al. PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic"[J]. Nano Energy, 2018, 46: 176-184 [60] GUPTA A, SAKAMOTO J. Controlling ionic transport through the PEO-LiTFSI/LLZTO interface[J]. The Electrochemical Society Interface, 2019, 28(2): 63-69 [61] JI X, ZHANG Y, CAO M, et al. Advanced inorganic/polymer hybrid electrolytes for all-solid-state lithium batteries[J]. Journal of Advanced Ceramics, 2022, 11(6): 835-861 [62] KWAK H, WANG S, PARK J, et al. Emerging halide superionic conductors for all-solid-state batteries: Design, synthesis, and practical applications[J]. ACS Energy Letters, 2022, 7(5): 1776-1805 [63] LIANG J, VAN DER MAAS E, LUO J, et al. A series of ternary metal chloride superionic conductors for high-performance all-solid-state lithium batteries[J]. Advanced Energy Materials, 2022, 12(21): 2103921 [64] SCHNEIDER H, SEDLMAIER S J, DU H, et al. Stabilization of highly conductive lithium argyrodites by means of lithium substitution: The case of Li6Fe0.5PS6[J]. ChemistrySelect, 2019, 4(12): 3351-3354 [65] TAN D, WU E, NGUYEN H, et al. Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte[J]. ACS Energy Letters, 2019, 4(10): 2418-2427 [66] ZHANG Z, SUN Y, DUAN X, et al. Design and synthesis of room temperature stable Li-argyrodite superionic conductors via cation doping[J]. Journal of Materials Chemistry A, 2019, 7(6): 2717-2722 [67] ZENG D, YAO J, ZHANG L, et al. Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes[J]. Nature Communications, 2022, 13(1): 1-13 [68] MO H, YIN Y, LUO J, et al. Lead-free solid-state organic-inorganic halide perovskite electrolyte for lithium-ion conduction[J]. ACS Applied Materials & Interfaces, 2022, 14(15): 17479-17485 [69] WAKUDKAR P, DESHPANDE A V. Effect of Li4SiO4 addition in Li6.22Al0.16La3Zr1.7Ta0.3O12 garnet type solid electrolyte for lithium ion battery application[J]. Ceramics International, 2019, 45(16): 20113-20120 [70] SHIN R H, SON S I, HAN Y, et al. Sintering behavior of garnet-type Li7La3Zr2O12-Li3BO3 composite solid electrolytes for all-solid-state lithium batteries[J]. Solid State Ionics, 2017, 301: 10-14 [71] CHEN S, HU X, BAO W, et al. Low-sintering-temperature garnet oxides by conformal sintering-aid coating[J]. Cell Reports Physical Science, 2021, 2(9): 100569 [72] XU S, SUN Z, SUN C, et al. Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature[J]. Advanced Functional Materials, 2020, 30(51): 2007172 [73] ARRESE-IGOR M, MARTINEZ-IBAÑEZ M, PAVLENKO E, et al. Toward high-voltage solid-state Li-metal batteries with double-layer polymer electrolytes[J]. ACS Energy Letters, 2022, 7(4): 1473-1480 [74] WEN S, LUO C, WANG Q, et al. Integrated design of ultrathin crosslinked network polymer electrolytes for flexible and stable all-solid-state lithium batteries[J]. Energy Storage Materials, 2022, 47: 453-461 [75] WANG H, HOU T, CHENG H, et al. Bifunctional LiI additive for poly(ethylene oxide) electrolyte with high ionic conductivity and stable interfacial chemistry[J]. Journal of Energy Chemistry, 2022, 71: 218-224 [76] ZHANG Z, ZHANG G, CHAO L. Three-dimensional fiber network reinforced polymer electrolyte for dendrite-free all-solid-state lithium metal batteries[J]. Energy Storage Materials, 2021, 41: 631-641 [77] FU Z, CHEN X, ZHANG Q. Review on the lithium transport mechanism in solid-state battery materials[J]. WIREs Computational Molecular Science, 2022, doi:10.1002/scms.1621
|