[1] Mester P, Wagner M, Rossmanith P. Molecular enrichment for qualitative molecular pathogen detection in food[J]. Food Analytical Methods, 2018, 11(5):1251-1256
[2] Xue T, Liang W, Li Y, et al. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor[J]. Nature Communications, 2019, 10(1):1-9
[3] Yang Z, Xu L, Liu L, et al. Routine screening of blood donations at Qingdao central blood bank, China, for hepatitis B virus (HBV) DNA with a real-time, multiplex nucleic acid test for HBV, hepatitis C virus, and human immunodeficiency virus Types 1 and 2[J]. Transfusion, 2013, 53:2538-2544
[4] Jani I V, de Schacht C. Innovations and challenges in early infant diagnosis of HIV[J]. Current Opinion in Hiv and Aids, 2019, 14(1):55-59
[5] Bauserman M, Conroy A L, North K, et al. An overview of malaria in pregnancy[J]. Seminars in Perinatology, 2019, 43(5):282-290
[6] Dore G J, Martinello M, Alavi M, et al. Global elimination of hepatitis C virus by 2030:Why not?[J]. Nature Medicine, 2020, 26(2):157-160
[7] Rani A, Donovan N, Mantri N. Review:The future of plant pathogen diagnostics in a nursery production system[J]. Biosensors and Bioelectronics, 2019, 145:1-12
[8] Patrick B N, Machuka E M, Githae D, et al. Evidence for the presence of African swine fever virus in apparently healthy pigs in South-Kivu Province of the Democratic Republic of Congo[J]. Veterinary Microbiology, 2020, 240:340-348
[9] Stentiford G D, Becnel & J, Weiss L M, et al. Microsporidia-emergent pathogens in the global food chain[J]. Trends in Parasitology, 2016, 32(4):336-348
[10] Yin J, Suo Y, Zou Z, et al. Integrated microfluidic systems with sample preparation and nucleic acid amplification[J]. Lab on a Chip, 2019, 19(17):2769-2785
[11] Li Z, Huang J, Yang B, et al. Miniaturized gel electrophoresis system for fast separation of nucleic acids[J]. Sensors and Actuators B:Chemical, 2018, 254:153-158
[12] Sidstedt M, Radstrom P, Hedman J. PCR inhibition in QPCR, DPCR and MPS:Mechanisms and solutions[J]. Analytical and Bioanalytical Chemistry, 2020, 412(9):2009-2023
[13] Sidstedt M, Steffen C R, Kiesler K M, et al. The impact of common PCR inhibitors on forensic MPS analysis[J]. Forensic Science International:Genetics, 2019, 40:182-191
[14] Matsumura S, Matsusue A, Waters B, et al. Effects of PCR inhibitors on mRNA expression for human blood identification[J]. Legal Medicine, 2018, 32:113-119
[15] Chomczynski P, Sacchi N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction:Twenty-something years on[J]. Nature Protocols, 2006, 1(2):581-585
[16] 宋洁云, 刘芳宏, 马军,等. 酚/氯仿法和盐析法提取人类外周血基因组DNA方法的比较[J]. 中国实验诊断学, 2013, 17(5):802-805 Song Jieyun, Liu Fanghong, Ma Jun, et al. Comparison of phenol/chloroform method and salting out method to extract human peripheral blood genomic DNA[J]. Chinese experimental diagnostics, 2013, 17(5):802-805(in Chinese)
[17] Wright M H, Adelskov J, Greene A C. Bacterial DNA extraction using individual enzymes and phenol/chloroform separation[J]. Journal of Microbiology & Biology Education, 2017, 18(2):1-3
[18] Hayyan M, Looi C Y, Hayyan A, et al. In vitro and in vivo toxicity profiling of ammonium-based deep eutectic solvents[J]. PLoS One, 2015, 10(2):1-18
[19] Rahman M M, Elaissari A. Nucleic acid sample preparation for in vitro molecular diagnosis:From conventional techniques to biotechnology[J]. Drug Discovery Today, 2012, 17(21/22):1199-1207
[20] Chen H, Wu Y, Chen Z, et al. From sample to answer:A low-cost disposable cartridge for epidemic detection on site based on 3D printing technology[J]. Nanoscience and Nanotechnology Letters, 2016, 8(12):1118-1126
[21] Gupta N. DNA extraction and polymerase chain reaction[J]. Journal of Cytology, 2019, 36(2):116-117
[22] Hong S, Kim Y, Park J H. High-efficiency automated DNA extraction method for degraded old skeletal samples[J]. Forensic Science International:Genetics Supplement Series, 2017, 6:e365-e367
[23] Ayoib A, Hashim U, Gopinath S C B, et al. DNA extraction on bio-chip:History and preeminence over conventional and solid-phase extraction methods[J]. Applied Microbiology and Biotechnology, 2017, 101(22):8077-8088
[24] Pankhurst Q A, Jones S, Dobson J. Applications of magnetic nanoparticles in biomedicine:The story so far[J]. Journal of Physics D, 2016, 49(50):1-3
[25] Belanova A A, Gavalas N, Makarenko Y M, et al. Physicochemical properties of magnetic nanoparticles:Implications for biomedical applications in vitro and in vivo[J]. Oncology Research and Treatment, 2018, 41(3):139-143
[26] Guo T, Lin M, Huang J, et al. The recent advances of magnetic nanoparticles in medicine[J]. Journal of Nanomaterials, 2018,16:1-8
[27] Takabayashi S, Kotani S, Flores-Estrada J, et al. Boron-implanted silicon substrates for physical adsorption of DNA origami[J]. International Journal of Molecular Sciences, 2018, 19(9):1-11
[28] Urbaniak J, Janowski D, Jacewski B. Isolation of nucleic acids using silicon dioxide powder as a tool for environmental monitoring[J]. Environmental Monitoring and Assessment, 2019, 191(12):1-7
[29] Sano M, Kaji N, Wu Q, et al. Quantitative evaluation of dielectric breakdown of silicon micro- and nanofluidic devices for electrophoretic transport of a single DNA molecule[J]. Micromachines, 2018, 9(4):1-12
[30] Shuai H, Wu X, Huang K, et al. Ultrasensitive electrochemical biosensing platform based on spherical silicon dioxide/molybdenum selenide nanohybrids and triggered Hybridization Chain Reaction[J]. Biosensors and Bioelectronics, 2017, 94:616-625
[31] An H, Jin B. Prospects of nanoparticle-DNA binding and its implications in medical biotechnology[J]. Biotechnology Advances, 2012, 30(6):1721-1732
[32] Kasyanenko N, Zhang Q, Bakulev V, et al. DNA binding with acetate bis(1, 10-phenanthroline)silver(I) monohydrate in a solution and metallization of formed structures[J]. Polymers, 2017, 9(6):1-10
[33] Zhang F, Sheng H, Wang S, et al. Screening DNA-targeted anticancer drug in vitro based on cancer cells DNA-templated silver nanoclusters[J]. Scientific Reports, 2019, 9(1):1-8
[34] Papagiannopoulos A, Mousdis G, Pispas S. Au nanoparticle-corona loaded polystyrene-b-quaternized poly(2-vinylpyridine) micelles and their interaction with DNA[J]. Macromolecular Chemistry and Physics, 2017, 218(3):1-7
[35] Wang L, Wang Y, Dong S L, et al. Nanocapsules of magnetic Au self-assembly for DNA migration and secondary self-assembly[J]. ACS Applied Materials & Interfaces, 2018, 10(6):5348-5357
[36] Sen R, Gahtory D, Carvalho R R, et al. Ultrathin covalently bound organic layers on mica:Formation of atomically flat biofunctionalizable surfaces[J]. Angewandte Chemie-International Edition, 2017, 56(15):4130-4134
[37] Yang J, Wang M, Cheng A, et al. A simple and rapid method for extracting bacterial DNA from intestinal microflora for ERIC-PCR detection[J]. World Journal of Gastroenterology, 2008, 14(18):2872-2876
[38] Koyama H, Iwasa M, Tsuchimochi T, et al. Utility of Y-STR haplotype and mtDNA sequence in personal identification of human remains[J]. The American Journal of Forensic Medicine and Pathology, 2002, 23(2):181-185
[39] Zou Y, Mason M G, Wang Y, et al. Nucleic acid purification from plants, animals and microbes in under 30 seconds[J]. PLoS Biology, 2017, doi:10.1016/j.ijmm.2017.11.004
[40] Kim J H, Kim H J. Fast and simple method for screening of single-stranded DNA breaking photosensitizers using graphene oxide[J]. Nano Convergence, 2018, 5(1):1-4
[41] Wu X, Mu F, Wang Y, et al. Graphene and graphene-based nanomaterials for DNA detection:A review[J]. Molecules, 2018, 23(8):1-23
[42] Close E D, Nwokeoji A O, Milton D, et al. Nucleic acid separations using superficially porous silica particles[J]. Journal of Chromatography A, 2016, 1440:135-144
[43] Quy D V, Hieu N M, Tra P T, et al. Synthesis of silica-coated magnetic nanoparticles and application in the detection of pathogenic viruses[J]. Journal of Nanomaterials, 2013, 200:1-12
[44] 刘玲玲. 赖氨酸修饰二氧化硅粒子的制备及其在DNA分离中的应用研究[D]. 长春:吉林大学, 2016 Liu Lingling. Preparation of silica particles modified by lysine and its application in DNA separation[D]. Changchun:Ji Lin University,2016(in Chinese)
[45] Gong D, Hui X, Guo Z, et al. The synthesis of PEI core@silica shell nanoparticles and its application for sensitive electrochemical detecting mi-RNA[J]. Talanta, 2019, 198:534-541
[46] Tiwari A P, Satvekar R K, Rohiwal S S, et al. Magneto-separation of genomic deoxyribose nucleic acid using pH responsive Fe3O4@silica@chitosan nanoparticles in biological samples[J]. RSC Advances, 2015, 5(11):8463-8470
[47] Jiang S, Zhuang J, Wang C, et al. Highly efficient adsorption of DNA on Fe3+-iminodiacetic acid modified silica particles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2012, 409:143-148
[48] Li T, Yi H, Liu Y, et al. One-step synthesis of DNA templated water-soluble Au-Ag bimetallic nanoclusters for ratiometric fluorescence detection of DNA[J]. Journal of Biomedical Nanotechnology, 2018, 14(1):150-160
[49] Yang H. Highly sensitive electrochemical biosensor assembled by Au nanoparticle/MOF-5 composite electrode for DNA detection[J]. International Journal of Electrochemical Science, 2019:5491-5507
[50] Zhang M, Chen J, Pi X, et al. Construction and electrochemical property studies of DNA duplexes tethered to gold electrode via Au-C bond[J]. Electroanalysis, 2019, 31(3):477-484
[51] Sandstrom P, Boncheva M, Akerman B. Nonspecific and thiol-specific binding of DNA to gold nanoparticles[J]. Langmuir, 2003, 19(18):7537-7543
[52] Thompson D G, Enright A, Faulds K, et al. Ultrasensitive DNA detection using oligonucleotide-silver nanoparticle conjugates[J]. Analytical Chemistry, 2008, 80(8):2805-2810
[53] Basu S M, Jana S, Pande S, et al. Interaction of DNA bases with silver nanoparticles:Assembly quantified through SPRS and SERS[J]. Journal of Colloid and Interface Science, 2008, 321(2):288-293
[54] Yang W, Shen C, Ji Q, et al. Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA[J]. Nanotechnology, 2009, 20(8):1-8
[55] Gu Q, Cheng C, Gonela R, et al. DNA nanowire fabrication[J]. Nanotechnology, 2006, 17(1):R14-R25
[56] Rampini S, Li P, Lee G U. Micromagnet arrays enable precise manipulation of individual biological analyte-superparamagnetic bead complexes for separation and sensing[J]. Lab on a Chip, 2016, 16(19):3645-3663
[57] Ali Z, Wang J, Tang Y, et al. Simultaneous detection of multiple viruses based on chemiluminescence and magnetic separation[J]. Biomaterials Science, 2017, 5(1):57-66
[58] Wu Y, Chen H, Chen Z, et al. Robotic sample preparation system based on magnetic separation[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(12):12257-12262
[59] Veyret R, Delair T, Pichot C, et al. Amino-containing magnetic nanoemulsions:Elaboration and nucleic acid extraction[J]. Journal of Magnetism and Magnetic Materials, 2005, 295(2):155-163
[60] 高承刚, 李卫东, 杨晓蕾. DEAE-Sepharose FF纯化脊髓灰质炎病毒Sabin株Ⅰ型稳定性研究[J]. 西部医学, 2019, 31(6):831-835 Gao Chenggang, Li Weidong, Yang Xiaolei. Study on the stability of DEAE-Sepharose FF purified poliovirus type 1 Sabin strain[J]. Medical Journal of West China, 2019, 31(6):831-835(in Chinese)
[61] Zheng M, Jagota A, Semke E D, et al. DNA-assisted dispersion and separation of carbon nanotubes[J]. Nature Materials, 2003, 2(5):338-342
[62] Zhao X, Striolo A, Cummings P T. C60 binds to and deforms nucleotides[J]. Biophysical Journal, 2005, 89(6):3856-3862
[63] Hawkins T L, Mckernan K J, Jacotot L B, et al. DNA sequencing:A magnetic attraction to high-throughput genomics[J]. Science, 1997, 276(5320):1887-1894
[64] Liu Z, Liu Y, Shen S, et al. Progress of recyclable magnetic particles for biomedical applications[J]. Journal of Materials Chemistry B, 2018, 6(3):366-380
[65] Bitar A, Vega-Chacon J, Lgourna Z, et al. Submicron silica shell-magnetic core preparation and characterization[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2018, 537:318-324
[66] Tangchaikeeree T, Polpanich D, Elaissari A, et al. Magnetic particles for in vitro molecular diagnosis:From sample preparation to integration into microsystems[J]. Colloids and Surfaces B:Biointerfaces, 2017, 158:1-8
[67] Chen X, Mao Q, Liu J, et al. Isolation/separation of plasmid DNA using hemoglobin modified magnetic nanocomposites as solid-phase adsorbent[J]. Talanta, 2012, 100:107-112
[68] P?otka-Wasylka J, Szczepańska N, de la Guardia M, et al. Modern trends in solid phase extraction:New sorbent media[J]. TrAC Trends in Analytical Chemistry, 2016, 77:23-43
[69] Chen Z, Wu Y, Kang M, et al. Research on automated nucleic acid extraction instrument based on magnetic nanoparticles separation[J]. Nanoscience and Nanotechnology Letters, 2018, 10(1):60-68
[70] Stormer M, Kleesiek K, Dreier J. High-volume extraction of nucleic acids by magnetic bead technology for ultrasensitive detection of bacteria in blood components[J]. Clinical Chemistry, 2007, 53(1):104-110
[71] Berensmeier S. Magnetic particles for the separation and purification of nucleic acids[J]. Applied Microbiology and Biotechnology, 2006, 73(3):495-504
[72] Arriagada F J, Osseo-Asare K. Controlled hydrolysis of tetraethoxysilane in a nonionic water-in-oil microemulsion:A statistical model of silica nucleation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1999, 154(3):311-326
[73] Stober W, Fink A, Bohn E. Controlled growth of monogispherse silica sphrerrs in micro size range[J]. Journal of Colloid and Interface Science, 1968, 26(1):62-69
[74] Hui C, Shen C, Tian J, et al. Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds[J]. Nanoscale, 2011, 3(2):701-705
[75] Yu X, Li P, Xiao C, et al. Synthesis of chain-like and core-shell spherical Fe3O4@SiO2 complex[J]. Advanced Science Letters, 2011, 4(1):96-103
[76] Yang P, Quan Z, Hou Z, et al. A magnetic, luminescent and mesoporous core-shell structured composite material as drug carrier[J]. Biomaterials, 2009, 30(27):4786-4795
[77] Abbas M, Abdel-Hamed M O, Chen J. Efficient one-pot sonochemical synthesis of thickness-controlled silica-coated superparamagnetic iron oxide (Fe3O4/SiO2) nanospheres[J]. Applied Physics A, 2017, 123(12):1-6
[78] Dehghan M, Motaharinejad A, Saadat M, et al. Novel approach to synthesizing polymer-functionalized Fe3O4/SiO2-NH2 via an ultrasound-assisted method for catalytic selective oxidation of alcohols to aldehydes and ketones in a DMSO/water mixture[J]. RSC Advances, 2015, 5(112):92335-92343
[79] Ma C, Li C, He N, et al. Preparation and characterization of monodisperse core-shell Fe3O4@SiO2 microspheres and its application for magnetic separation of nucleic acids from E. coli BL21[J]. Journal of Biomedical Nanotechnology, 2012, 8(6):1000-1005
[80] Fan Q, Guan Y, Zhang Z, et al. A new method of synthesis well-dispersion and dense Fe3O4@SiO2 magnetic nanoparticles for DNA extraction[J]. Chemical Physics Letters, 2019, 715:7-13
[81] Quy D V, Hieu N M, Tra P T, et al. Synthesis of silica-coated magnetic nanoparticles and application in the detection of pathogenic viruses[J]. Journal of Nanomaterials, 2013, 2013:1-7
[82] Xu S, Song X, Guo J, et al. Composite microspheres for separation of plasmid DNA decorated with MNPS through in situ growth or interfacial immobilization followed by silica coating[J]. ACS Applied Materials & Interfaces, 2012, 4(9):4764-4775
[83] Deng Y, Qi D, Deng C, et al. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins[J]. Journal of the American Chemical Society, 2008, 130(1):28-29
[84] Liu Q, Li J, Liu H, et al. Rapid, cost-effective DNA quantification via a visually-detectable aggregation of superparamagnetic silica-magnetite nanoparticles[J]. Nano Research, 2014, 7(5):755-764
[85] He X, Huo H, Wang K, et al. Plasmid DNA isolation using amino-silica coated magnetic nanoparticles (ASMNPs)[J]. Talanta, 2007, 73(4):764-769
[86] Pham X H, Baek A, Kim T H, et al. Graphene oxide conjugated magnetic beads for RNA extraction[J]. Chemistry-an Asian Journal, 2017, 12(15):1883-1888
[87] Perçin I, Karakoç V, Akgöl S, et al. Poly(hydroxyethyl methacrylate) based magnetic nanoparticles for plasmid DNA purification from Escherichia coli lysate[J]. Materials Science and Engineering:C, 2012, 32(5):1133-1140
[88] Zainabadi K, Adams M, Han Z Y, et al. A novel method for extracting nucleic acids from dried blood spots for ultrasensitive detection of low-density Plasmodium falciparum and Plasmodium vivax infections[J]. Malaria Journal, 2017, 16(1):1-11
[89] Tang Y, Zou J, Ma C, et al. Highly sensitive and rapid detection of pseudomonas aeruginosa based on magnetic enrichment and magnetic separation[J]. Theranostics, 2013, 3(2):85-92
[90] Li P P, Mi R, Zhao R, et al. Quantitative real-time PCR with high-throughput automatable DNA preparation for molecular screening of Nosema SPP. in Antheraea pernyi[J]. Journal of Invertebrate Pathology, 2019, 164:16-22
[91] Bai Y, Roncancio D, Suo Y, et al. A method based on amino-modified magnetic nanoparticles to extract DNA for PCR-based analysis[J]. Colloids and Surfaces B:Biointerfaces, 2019, 179:87-93
[92] Oblath E, Hampton Henley W, Alarie J P, et al. A microfluidic chip integrating DNA extraction and real-time PCR for the detection of bacteria in saliva[J]. Lab on a Chip, 2013, 13(7):1325-1332
[93] 汪浩,朱元荣,赵晓丽,等. 常规金属离子对Fe3O4磁性纳米颗粒悬浮和沉降的影响[J]. 环境科学学报, 2017, 37(4):1367-1373 Wang Hao, Zhu Yuanrong, Zhao Xiaoli, et al. Effect of conventional metal ions on suspension and deposition of Fe3O4 magnetic nanoparticles[J]. Journal of Environmental Science, 2017, 37(4):1367-1373(in Chinese)
|