[1] 陈义, 李晋成. 光子晶体在分析化学中的应用[J]. 色谱, 2009, 27(5): 573-583 Chen Yi, Li Jincheng. Photonic crystals for analytical chemistry[J]. Chinese Journal of Chromatography, 2009, 27(5): 573-583(in Chinese)
[2] Zong Y, Xia J. Photonic band structure of two-dimensional metal/dielectric photonic crystals[J]. J Phys D: Appl Phys, 2015, 48(35): 355 103-355 110
[3] 傅小勤, 郭明, 张晓辉, 等. 光子晶体传感器的研究进展[J]. 材料导报A: 综述篇,2011, 25(2): 57-62 Fu Xiaoqin, Guo Ming, Zhang Xiaohui, et al. Recent development of photonic crystals sensors[J]. Materials Review A:Review Article, 2011, 25(2): 57-62(in Chinese)
[4] 段廷蕊, 李海华, 孟子晖, 等. 光子晶体应用于化学及生物传感器的研究进展[J]. 化学通报, 2009, 4: 298-306 DuanTingrui, Li Haihua, Meng Zihui, et al. Application of photonic crystals in chemical and bio-sensors[J]. Chemistry Bulletin, 2009, 4: 298-306(in Chinese)
[5] Ge J, Yin Y. Responsive photonic crystals[J]. Angew Chem Int Ed, 2011, 50(7): 1 492-1 522
[6] Li M, He F, Liao Q, et al. Ultrasensitive DNA detection using photonic crystals[J]. Angew Chem Int Ed, 2008, 47(38): 7 258-7 262
[7] Burnham M R, Turner J N, Szarowski D, et al. Biological functionalization and surface micropatterning of polyacrylamide hydrogels[J]. Biomaterials, 2006, 27(35): 5 883-5 891
[8] Samchenko Y, Ulberg Z, Korotych O. Multipurpose smart hydrogel systems[J]. Adv Colloid Interface Sci, 2011, 168(1/2): 247-262
[9] Zhang R, Wang Y, Yu L. Specific and ultrasensitive ciprofloxacin detection by responsive photonic crystal sensor[J]. J Hazard. Mater, 2014, 280: 46-54
[10] Cai Z, Smith N L, Zhang J, et al. Two-Dimensional photonic crystal chemical and biomolecular sensors[J]. Anal Chem, 2015, 87(10): 5 013-5 025
[11] Alivisatos P. The use of nanocrystals in biological detection[J]. Nat Biotechnol, 2004, 22(1): 47-52
[12] Fenzl C, Hirsch T, Wolfbeis O S. Photonic crystals for chemical sensing and biosensing[J]. Angew Chem Int Ed, 2014, 53(13): 3 318-3 335
[13] Lin F, Yu L. Thiourea functionalized hydrogel photonic crystal sensor for Cd2+ detection[J]. Anal Methods, 2012, 4(9): 2 838-2 845
[14] Reese C E, Asher S A. Photonic crystal optrode sensor for detection of Pb2+ in high ionic strength environments[J]. Anal Chem, 2003, 75(15): 3 915-3 918
[15] Meng L, Meng P, Tang B, et al. Molecularly imprinted photonic hydrogels for fast screening of atropine in biological samples with high sensitivity[J]. Forensic Sci Int, 2013, 231(1/3): 6-12
[16] Nakayama D, Takeoka Y, Watanabe M, et al. Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique[J]. Angew Chem Int Ed, 2003, 42(35): 4 197-4 200
[17] Hong X, Peng Y, Bai J, et al. A novel opal closest-packing photonic crystal for naked-eye glucose detection[J]. Small, 2014, 10 (7): 1 308-1 313
[18] MacConaghy K I, Geary C I, Kaar J L, et al. Photonic crystal kinase biosensor[J]. J Am Chem Soc, 2014, 136(19): 6 896-6 899
[19] Xie Z, Zhao Y, Sun L, et al. Photo-Bleaching immunity encoded photonic suspension array for label-free multiplex analysis[J]. Chem Comm, 2009, 45: 7 012-7 014
[20] Choia E, Choib Y, Nejadc Y H P, et al. Label-Free specific detection of immunoglobulin G antibody using nanoporous hydrogel photonic crystals[J]. Sens Actuators, B, 2013, 180: 107-113
[21] Wang X, Mu Z, Liu R, et al. Molecular imprinted photonic crystal hydrogels for the rapid and label-free detection of imidacloprid[J]. Food Chem, 2013, 141(4): 3 947-3 953
[22] Hu X, Li G, Li M, et al. Ultrasensitive specific stimulant assay based on molecularly imprinted photonic hydrogels[J]. Adv Funct Mater, 2008, 18(4): 575-583
[23] Wang F, Zhu Z, Xue M, et al. Cellulose photonic crystal film sensor for alcohols[J]. Sens Actuators B, 2015, 220: 222-226
[24] Sai N, Wu Y, Sun Z, et al. Molecular imprinted opal closest-packing photonic crystals for the detection of trace 17β-estradiol in aqueous solution[J]. Talanta, 2015, 144: 157-162
[25] Li J, Zhang Z, Xu S, et al. Label-Free colorimetric detection of trace cholesterol based on molecularly imprinted photonic hydrogels[J]. J Mater Chem, 2011, 21(48): 19 267-19 274
[26] Peng H, Wang S, Zhang Z, et al. Molecularly imprinted photonic hydrogels as calorimetric sensors for rapid and label-free detection of vanillin[J]. J Agric Food Chem, 2012, 60(8): 1 921-1 928
[27] Gaggelli E, Kozlowski H, Valensin D, et al. Copper homeostasis and neurodegenerative disorders (alzheimer's, prion, and parkinson's diseases and amyotrophic lateral sclerosis) [J]. Chem Rev, 2006, 106(6): 1 995-2 044
[28] Deschamps P, Zerrouk N, Nicolis I, et al. Copper(II)/L-glutamine complexation study in solid state and in aqueous solution[J]. Inorg Chim Acta, 2003, 353: 22-34
[29] Løvstad R A. A kinetic study on the distribution of Cu(II)-ions between albumin and transferring[J]. Biometals, 2004, 17(2): 111-113
[30] Oshima T, Ishizaka S, Morizono H, et al. Adsorption behavior of metal ions on alkylhistidine extractant impregnated resins: Effect of functional groups of histidine[J]. Sep Purif Technol, 2013, 114: 11-16
[31] Deschampsa P, Kulkarnia P P, Gautam-Basakb M, et al. The saga of copper(II)-L-histidine[J]. Coord Chem Rev, 2005, 249(9/10): 895-909
[32] Ferrer P, Jimenez-Villacorta F, Rubio-Zuazo J. et al. Environmental influence on Zn-histidine complexes under no-packing conditions[J]. J Phys Chem B, 2014, 118(11): 2 842-2 850
[33] Thirupathi P, Lee K, A ratiometric fluorescent detection of Zn(II) in aqueous solutions using pyrene-appended histidine[J]. Bioorg Med Chem Lett, 2013, 23(24): 6 811-6 815
[34] Weng Y C, Fan F F, Bard A J. Combinatorial biomimetics optimization of a composition of copper(II) poly-L-histidine complex as an electrocatalyst for O2 reduction by scanning electrochemical microscopy[J]. J Am Chem Soc, 2005, 127(50): 17 576-17 577
[35] Kurzak B, Kamecka A, Bogusz K, et al. Stabilities and coordination modes of histidine in copper(II) mixed-ligand complexes with ethylenediamine, diethylenetriamine or N,N,N',N",N"-pentamethyl diethylenetriamine in aqueous solution[J]. Polyhedron, 2008, 27(13): 2 952-2 958
|