[1] Ruppert A M, Weinberg K, Palkovits R. Hydrogenolysis goes bio:From carbohydrates and sugar alcohols to platform chemicals[J]. Angewandte Chemie International Edition, 2012, 51(11):2 564-2 601
[2] Klemm D, Heublein B, Fink H P, et al. Cellulose:Fascinating biopolymer and sustainable raw material[J]. Angewandte Chemie International Edition, 2005, 44(22):3 358-3 393
[3] Fleming K, Gray D G, Matthews S. Cellulose crystallites[J]. Chemistry-A European Journal, 2001, 7(9):1 831-1 836
[4] Fukuoka A, Dhepe P L. Catalytic conversion of cellulose into sugar alcohols[J]. Angewandte Chemie International Edition, 2006, 45(31):5 161-5 163
[5] Lee H, Han J W. Direct conversion of cellulose into sorbitols using dual-functionalized catalysts in neutral aqueous solution[J]. Catalysis Communications, 2012, 19:115-118
[6] Geboers J, Van de Vyver S, Ooms R, et al. Chemocatalytic conversion of cellulose:Opportunities, advances and pitfalls[J]. Catalysis Science & Technology, 2011, 1(5):714-726
[7] Ding L, Wang A, Zheng M, et al. Selective transformation of cellulose into sorbitol by using a bifunctional nickel phosphide catalyst[J]. Chem Sus Chem, 2010, 3(7):818-821
[8] Baek I G, You S J, Park E D. Direct conversion of cellulose into polyols over Ni/W/SiO2-Al2O3[J]. Bioresource Technology, 2012, 114: 684-690
[9] You S J, Baek I G, Kim Y T, et al. Direct conversion of cellulose into polyols or H2 over Pt/Na(H)-ZSM-5[J]. Korean Journal of Chemical Engineering, 2011, 28(3):744-750
[10] Geboers J, Van de Vyver S, Carpentier K, et al. Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon[J]. Chemical Communications, 2010, 46(20):3 577-3 579
[11] Geboers J, Van de Vyver S, Carpentier K, et al. Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid[J]. Chemical Communications, 2011, 47(19):5 590-5 592
[12] 刘佳欣, 黄玉东. 纳米材料在纤维素催化转化中的应用[J]. 纤维素科学与技术, 2011, 19(4):74-79 Liu Jiaxin, Huang Yudong. Nanosized materials in the application of the catalytic conversion of cellulose[J]. Journal of Cellulose Science and Technology, 2011, 19(4):74-79 (in Chinese)
[13] Luo C, Wang S, Liu H. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water[J]. Angewandte Chemie International Edition, 2007, 46(40):7 636-7 639
[14] Chambon F, Rataboul F, Pinel C, et al. Cellulose conversion with tungstated-alumina-based catalysts:Influence of the presence of platinum and mechanistic studies[J]. Chem Sus Chem, 2013, 6(3):500-507
[15] Zheng M, Wang A, Ji N, et al. Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol[J]. Chem Sus Chem, 2010, 3(1):63-66
[16] Kobayashi H, Komanoya T, Hara K, et al. Water-Tolerant mesoporous-carbon-supported ruthenium catalysts for the hydrolysis of cellulose to glucose[J]. Chem Sus Chem, 2010, 3(4):440-443
[17] 聂仁峰, 王军华, 费金华, 等. 介孔氧化铝的制备及其在甲醇脱水制二甲醚反应中的应用[J]. 催化学报, 2011, 32 (2):379-384 Nie Renfeng, Wang Junhua, Fei Jinhua, et al. Preparation of mesoporous alumina and its application in dehydration of methanol to dimethyl ether[J]. Chinese Journal of Catalysis, 2011, 32 (2):379-384 (in Chinese)
[18] Jun S, Joo S H, Ryoo R, et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure[J]. Journal of American Chemistry Society, 2000, 122(43):10 712-10 713
[19] Chambon F, Rataboul F, Pinel C, et al. Cellulose hydrothermal conversion promoted by heterogeneous Brønsted and Lewis acids:Remarkable efficiency of solid Lewis acids to produce lactic acid[J]. Applied Catalysis B:Environmental, 2011, 105(1/2):171-181
|