[1] Ma F, Hanna M A. Biodiesel production:A review[J]. Bioresource Technology, 1999, 70:1-15
[2] 王昶, 黄晓明, 贾青竹, 等. 生物柴油开发与应用[J]. 化学工业与工程, 2008, 25(6):549-553 Wang Chang, Huang Xiaoming, Jia Qingzhu, et al. Development and application of biodiesel oil[J]. Chemical Industry and Engineering, 2008, 25(6):549-553(in Chinese)
[3] Simacek P, Kubicka D, Sebor G, et al. Hydroprocessed rapeseed oil as a source of hydrocarbon-based biodiesel[J]. Fuel, 2009, 88(3):456-460
[4] Ramanathan S, Oyama S T. New catalysts for hydroprocessing:Transition metal carbides and nitrides[J]. Journal of Physical Chemical, 1995, 99(44):16 365-16 372
[5] Alexander A M, Hargreaves J S J. Alternative catalytic materials:Carbides, nitrides, phosphides and amorphous boron alloys[J]. Chemical Society Reviews, 2010, 39(11):4 388-4 401
[6] Wang W, Yang Y, Bao J, et al. Characterization and catalytic properties of Ni-Mo-B amorphous catalysts for phenol hyydrodeoxygenation[J]. Catalysis Communications, 2009, 11:100-105
[7] Phuong B, Juan A C, Oyama S T, et al. Studies of the synthesis of transition metal phosphides and their activity in the hydrodeoxygenation of a biofuel model compound[J]. Journal of Catalysis, 2012, 294:184-198
[8] Yang Y, Chen J, Shi H. Deoxygenation of methyl laurate as a model compound to hydrocarbons on Ni2P/SiO2, Ni2P/MCM-41, and Ni2P/SBA-15 catalysts with different dispersions[J]. Energy & Fuels, 2013, 27(6):3 400-3 409
[9] Chen J, Shi H, Li L, et al. Deoxygenation of methyl laurate as a model compound to hydrocarbons on transition metalphosphide catalysts[J]. Applied Catalysis B-Environmental, 2014, 144:870-884
[10] Shi H, Chen J, Yang Y, et al. Catalytic deoxygenation of methyl laurate as a model compound to hydrocarbons on nickelphosphide catalysts:Remarkable support effect[J]. Fuel Processing Technology, 2014, 118:161-170
[11] 刘理华, 李广慈, 刘迪, 等. 过渡金属磷化物的制备和催化性能研究[J]. 化学进展, 2010, 22(9):1 701-1 708 Liu Lihua, Li Guangci, Liu Di, et al. Preparation and catalytic performance of transition metal phosphides[J]. Process in Chemistry, 2010, 22(9):1 701-1 708(in Chinese)
[12] Rodriguez J A, Kim J Y, Hanson C J. Physical and chemical properties of MoP, Ni2P, and MoNiP hydrodesulfurization catalysts:Time-Resolved X-ray diffraction, density functional, and hydrodesulfurization activity studies[J]. Journal of Physical Chemical B, 2003, 107(26):6 276-6 285
[13] Song L, Zhang S. A versatile route to synthesizing bulk and supported nickel phosphides by thermal treatment of a mechanical mixing of nickel chloride and sodium hypophosphite[J]. Powder Technology, 2011, 208:713-716
[14] Shi G, Shen J. New synthesis method for nickel phophide nanoparticles:Solid phase reaction of nickel cations with hypophosphites[J]. Journal of Materials Chemistry, 2009, 19:2 295-2 297
[15] Guo T, Chen J, Li K. Promotion effect of steam treatment on activity of Ni2P/SiO2 for hydrodechlorination of chlorobenzene[J]. Chinese Journal of Catalysis, 2012, 33(7):1 080-1 085
[16] Senol O I, Ryymin E M, Viljava T R, et al. Effect of hydrogen sulphide on the hydrodeoxygenation of aromatic and aliphatic oxygenates on sulphided catalysts[J]. Journal of Molecular Catalysis A:Chemical, 2007, 277(1):107-112
[17] Laurent E, Delmon B. Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 catalysts. I:Catalytic reaction schemes[J]. Applied Catalysis A, 1994, 109:77-96
[18] Zuo H, Liu Q, Wang T, et al. Hydrodeoxygenation of methyl palmitate over supported Ni catalysts for diesel-like fuel production[J]. Energy & Fuels, 2012, 26:3 747-3 755
|